精英家教网 > 高中数学 > 题目详情

【题目】已知正项等比数列的前项和为,首项,且,正项数列满足.

(1)求数列的通项公式;

(2)记,是否存在正整数,使得对任意正整数恒成立?若存在,求正整数的最小值,若不存在,请说明理由.

【答案】(1)(2)见解析

【解析】

(1)先设等比数列的公比为,根据题中条件,求出公比,即可得出的通项公式;再由累乘法求出,根据题中条件求出代入验证,即可得出的通项公式;

(2)先由(1)化简,根据,求出的最大值,进而可得出结果.

解:(1)设等比数列的公比为

,得

,则

所以.

,由,得

以上各式相乘得:,所以.

中,分别令,得满足.

因此.

(2)由(1)知

又∵

,得

,解得

∴当时,,即.

∵当时,

,即.

此时,即

的最大值为.

若存在正整数,使得对任意正整数恒成立,则

∴正整数的最小值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 1个自然数随机填入n×n方格的个方格中,每个方格恰填一个数().对于同行或同列的每一对数,都计算较大数与较小数的比值,在这个比值中的最小值,称为这一填数法的特征值”.

(1),请写出一种填数法,并计算此填数法的特征值”;

(2)时,请写出一种填数法,使得此填数法的特征值

(3)求证:对任意一个填数法,其特征值不大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有的把握认为选手成绩“优秀”与文化程度有关?

优秀

合格

合计

大学组

中学组

合计

注:,其中.

(2)若参赛选手共万人,用频率估计概率,试估计其中优秀等级的选手人数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋里装有个白球和个红球,从口袋中任取个球.

(1)共有多少种不同的取法?

(2)其中恰有一个红球,共有多少种不同的取法?

(3)其中不含红球,共有多少种不同的取法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 (吨)与相应的生产能耗 (吨标准煤)的几组对照数据

(1)

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;

(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据1求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

(附: ,,,,其中,为样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.

(1)若直线过定点,且与圆相切,求的方程;

(2)若圆的半径为,圆心在直线上,且与圆外切,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC外接圆半径是2, ,则△ABC的面积最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+mx(m为常数).
(1)讨论函数f(x)的单调区间;
(2)当 时,设 的两个极值点x1 , x2(x1<x2)恰为h(x)=2lnx﹣ax﹣x2的零点,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点为圆心的圆被直线截得的弦长为.

(1)求圆的标准方程;

(2)求过与圆相切的直线方程;

(3)若轴的动点,分别切圆两点.试问:直线是否恒过定点?若是,求出恒过点坐标;若不是,说明理由.

查看答案和解析>>

同步练习册答案