精英家教网 > 高中数学 > 题目详情
9.数列{an}满足(n一1)an+1=(n+1)an-2(n-1),n=1,2,3,…且a100=10098,求数列{an}的通式.

分析 由已知递推式结合a100=10098求得a1=0,a2=4,再把数列递推式变形得到$\frac{{a}_{n+1}}{(n+1)n}-\frac{{a}_{n}}{n(n-1)}=-2(\frac{1}{n}-\frac{1}{n+1})$,累加后求数列{an}的通式.

解答 解:在(n-1)an+1=(n+1)an-2(n-1)中,取n=1,可得a1=0,
在递推式中分别取n=2,3,4,…,99,结合a100=10098,可得a2=4.
当n≥2时,
由(n-1)an+1=(n+1)an-2(n-1),得
$\frac{{a}_{n+1}}{(n+1)n}=\frac{{a}_{n}}{n(n-1)}-\frac{2}{n(n+1)}$,
即$\frac{{a}_{n+1}}{(n+1)n}-\frac{{a}_{n}}{n(n-1)}=-2(\frac{1}{n}-\frac{1}{n+1})$,
∴$\frac{{a}_{3}}{3•2}-\frac{{a}_{2}}{2•1}=-2(\frac{1}{2}-\frac{1}{3})$,
$\frac{{a}_{4}}{4•3}-\frac{{a}_{3}}{3•2}=-2(\frac{1}{3}-\frac{1}{4})$,
$\frac{{a}_{5}}{5•4}-\frac{{a}_{4}}{4•3}=-2(\frac{1}{4}-\frac{1}{5})$,

$\frac{{a}_{n}}{n(n-1)}-\frac{{a}_{n-1}}{(n-1)(n-2)}=-2(\frac{1}{n-1}-\frac{1}{n})$(n≥2).
累加得:$\frac{{a}_{n}}{n(n-1)}=\frac{{a}_{2}}{2}-2(\frac{1}{2}-\frac{1}{n})=\frac{{a}_{2}}{2}-\frac{n-2}{n}$=$\frac{4}{2}-\frac{n-2}{n}=\frac{n+2}{n}$,
∴an=(n-1)(n+2)(n≥2).
验证n=1时上式成立.
∴an=(n-1)(n+2).

点评 本题考查数列递推式,训练了累加法求数列的通项公式,解答此题的关键是由题意得到$\frac{{a}_{n+1}}{(n+1)n}=\frac{{a}_{n}}{n(n-1)}-\frac{2}{n(n+1)}$并裂项,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若f(x)=x2+a(a为常数),$f(\sqrt{2})=3$,则a的值为(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,则|$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$|的最大值是(  )
A.1B.$\sqrt{2}$+1C.$\sqrt{2}$-1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a∈R,函数f(x)=x|x-a|-a,若对任意的x∈[2,3],f(x)≥0恒成立,则(  )
A.a≤1或a≥$\frac{9}{2}$B.a≤$\frac{4}{3}$或a≥$\frac{7}{2}$C.a≤1或a≥$\frac{7}{2}$D.a≤$\frac{4}{3}$或a≥$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,A=60°,B=75°,c=3,求C,a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.cos$\frac{π}{12}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若角θ的终边经过点Q(sin(-660°),cos750°),则sinθ=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等比数列{an}中,已知a5-a1=15,a4-a2=6,若公比q>1,则a3=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右准线与x轴交于点A,点B的坐标为(0,a),若椭圆上的点M满足$\overrightarrow{AB}$=3$\overrightarrow{AM}$,则椭圆C的离心率值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步练习册答案