精英家教网 > 高中数学 > 题目详情
下列命题中所有正确序号为
①②③④
①②③④

①在△ABC中,若sinA>sinB,则cosA<cosB;
②若b2-4c≥0,则函数y=log2(x2+bx+c)的值域为R
③如果一个数列{an}的前n项和Sn=abn+c,(a≠0,b≠1,c≠1)则此数列是等比数列的充要条件是a+c=0
④设命题p:1-
1
2x-1
<0,命题q:-x 2+(2a+1)x-a(a+1)>0,若¬p是¬q的必要不充分条件,求实数a的取值范围0≤a≤
1
2
分析:根据正弦定理和余弦函数在(0,π)是减函数,能推导出①正确;根据对数函数的性质能推导出②正确;根据等比数列的通项与性质,结合已知Sn求的an方法,通过正反论证可得③正确;根据命题的必要不充分条件和不等式的性质能判断出④正确.
解答:解:对于①:在△ABC中,若sinA>sinB,则A>B,
由余弦函数在(0,π)是减函数,故有cosA<cosB,故①正确;
对于②:若b2-4c≥0,则x2+bx+c能取得所有正数,
∴函数y=log2(x2+bx+c)的值域为R,故②正确;
对于③:数列{an}的前n项和Sn=abn+c
可得当n≥2时,an=Sn-Sn-1=abn-1(b-1)
当n=1时,a1=S1=ab+c
接下来讨论充分性与必要性
若a+c=0,则ab+c=a(b-1)=ab1-1(b-1),
可得数列的通项为an=a(b-1)bn-1
∵a≠0,b≠0,b≠1
∴数列{an}构成以a(b-1)为首项,公比为b的等比数列.故充分性成立;
反之,若此数列是等比数列,得
∵当n≥2时,an=abn-1(b-1),公比为b
∴a2=ab1(b-1)=ba1=b(ab+c)
∴-ab=bc⇒b(a+c)=0
∵b≠0,
∴a+c=0,故必要性成立,故③正确;
④∵命题p:1-
1
2x-1
<0,
∴¬P:
2x-2
2x-1
≥0
,即x≥1,或x
1
2

∵命题q:-x 2+(2a+1)x-a(a+1)>0,
∴¬q:(x-a)[x-(a+1)]≥0,即x≥a+1,或x<a.
∵¬p是¬q的必要不充分条件,
a≤
1
2
a+1≥1
,解得实数a的取值范围0≤a≤
1
2

故④正确.
故答案为:①②③④.
点评:本题考查命题的真假判断,是基础题.解题时要认真审题,注意三角函数、对数函数、数列、不等式等知识点的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中所有正确的序号是
①④
①④

①函数f(x)=ax-1+3(a>0且a≠1)的图象一定过定点P(1,4);
②函数f(x-1)的定义域是(1,3),则函数f(x)的定义域为(2,4);
③已知f(x)=x5+ax3+bx-8,且f(-2)=8,则f(2)=-8;
④f(x)=
1
1-2x
-
1
2
为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

符号[x]表示不超过x的最大整数,如[2.3]=2,[-1.3]=-2,定义函数{x}=x+[x],那么下列 命题中所有正确命题的序号为
①⑤
①⑤

①函数{x}定义域是R;
②函数{x}的值域为R;
③方程{x}=
32
唯一解;
④函数{x}是周期函数;
⑤函数{x}是增函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题中所有正确序号为______
①在△ABC中,若sinA>sinB,则cosA<cosB;
②若b2-4c≥0,则函数y=log2(x2+bx+c)的值域为R
③如果一个数列{an}的前n项和Sn=abn+c,(a≠0,b≠1,c≠1)则此数列是等比数列的充要条件是a+c=0
④设命题p:1-
1
2x-1
<0,命题q:-x 2+(2a+1)x-a(a+1)>0,若¬p是¬q的必要不充分条件,求实数a的取值范围0≤a≤
1
2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省攀枝花市米易中学高三(上)第二次段考数学试卷(文科)(解析版) 题型:填空题

下列命题中所有正确序号为   
①在△ABC中,若sinA>sinB,则cosA<cosB;
②若b2-4c≥0,则函数的值域为R
③如果一个数列{an}的前n项和则此数列是等比数列的充要条件是a+c=0
④设命题p:<0,命题q:-x 2+(2a+1)x-a(a+1)>0,若¬p是¬q的必要不充分条件,求实数a的取值范围0≤a≤

查看答案和解析>>

同步练习册答案