精英家教网 > 高中数学 > 题目详情
(2008•湖北模拟)已知f(x)=ax3+bx2+cx+d为奇函数,且在点(2,f(2))处的切线方程为9x-y-16=0.
(1)求f(x)的解析式;
(2)若y=f(x)+m的图象与x轴仅有一个公共点,求m的范围.
分析:(1)由题意可知f(x)为奇函数,利用奇函数的定义求得b,d.再利用导数的几何意义知在x=2处的导数等于切线的斜率,切点在函数f(x)的图象上,建立方程组,解之即可求出函数f(x)的解析式.
(2)将题中条件:“y=f(x)+m的图象与x轴仅有一个公共点”等价于“g(x)=x3-3x+m的其图象和x轴只有一个交点”,利用导数求得原函数的极值,最后要使g(x)=x3-3x+m的其图象和x轴只有一个交点,得到关于m的不等关系,从而求实数m的取值范围.
解答:解:(1)∵f(x)为奇函数,∴b=d=0,∴f(x)=ax3+cx∵f(x)过点(2,2),f'(x)=3ax2+c,
2=8a+2c
9=12a+c

∴a=1,c=-3
∴f(x)=x3-3x(6分)
(2)设g(x)=f(x)+m,即g(x)=x3-3x+m,g'(x)=3x2-3=3(x+1)(x-1)
当x变化时,g'(x)变化情况如下表:
x (-∞,-1) -1 (-1,1) 1 (1,+∞)
g'(x) + 0 - 0 +
g(x) 极大值 极小值
所以g'(x)的极大值2+m,极小值-2+m
要y=f(x)+m与x轴只有一个交点,只需-2+m>0或2+m<0
故当m∈(-∞,-2)∪(2,+∞)时,y=f(x)+m与x轴只有一个交点(13分).
点评:本题主要考查了利用导数研究曲线上某点切线方程,考查函数单调性的应用、利用导数研究函数的单调性、导数在最大值、最小值问题中的应用、不等式的解法等基础知识,考查运算求解能力,转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•湖北模拟)若等比数列的各项均为正数,前n项之和为S,前n项之积为P,前n项倒数之和为M,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只,第n次投入后,每只产品的固定成本为g(n)=
k
n+1
(k>0,k为常数,n∈Z且n≥0),若产品销售价保持不变,第n次投入后的年利润为f(n)万元.
(1)求k的值,并求出f(n)的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知向量
a
=(1,2),向量
b
=(x,-2),且
a
∥(
a
-
b
)
,则实数x等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知向量
a
=(2cosx,tan(x+α))
b
=(
2
sin(x+α),tan(x-α))
,已知角α(α∈(-
π
2
π
2
))
的终边上一点P(-t,-t)(t≠0),记f(x)=
a
b

(1)求函数f(x)的最大值,最小正周期;
(2)作出函数f(x)在区间[0,π]上的图象.

查看答案和解析>>

同步练习册答案