精英家教网 > 高中数学 > 题目详情
向量a=b=(cos2x,cosx),f(x)=a·b,为了得到函数y=f(x)的图象,可将函数y=sin2x的图象
[     ]
A.向右平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向左平移个单位长度
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设O是正方形ABCD的中心,向量
AO
OB
CO
OD
是(  )
A、平行向量
B、有相同终点的向量
C、相等向量
D、模相等的向量

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的个数为(  )
(1)
AB
+
MB
+
BC
+
OM
+
CO
=
AB

(2)已知向量
a
=(6,2)与
b
=(-3,k)的夹角是钝角,则k的取值范围是k<0
(3)若向量
e1
=(2,-3),
e2
=(
1
2
,-
3
4
)
能作为平面内所有向量的一组基底
(4)若
a
b
,则
a
b
上的投影为|
a
|

查看答案和解析>>

科目:高中数学 来源: 题型:

设O是正△ABC的中心,则向量
AO
BO
CO
是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量
m
=(2a-c,b)与向量
n
=(cosB,-cosC)互相垂直.
(1)求角B的大小;
(2)求函数y=2sin2C+cos(B-2C)的值域;
(3)若AB边上的中线CO=2,动点P满足
AP
=sin2θ•
AO
+cos2θ•
AC
(θ∈R)
,求(
PA
+
PB
)•
PC
的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中,正确的个数为(  )
(1)
AB
+
MB
+
BC
+
OM
+
CO
=
AB

(2)已知向量
a
=(6,2)与
b
=(-3,k)的夹角是钝角,则k的取值范围是k<0
(3)若向量
e1
=(2,-3),
e2
=(
1
2
,-
3
4
)
能作为平面内所有向量的一组基底
(4)若
a
b
,则
a
b
上的投影为|
a
|
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案