精英家教网 > 高中数学 > 题目详情
已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<α<β<π

(I)求|
a
|
的值;
(II)求证:
a
+
b
a
-
b
互相垂直;
(III)设|k
a
+
b
|=|
a
-k
b
|,k∈R
且k≠0,求β-α的值.
(I)∵
a
=(cosα,sinα)

|
a
| =
cos2α+sin2α
=1
.(3分)
(II)证明:∵(
a
+
b
)•(
a
-
b

=(cosα+cosβ)(cosα-cosβ)+(sinα+sinβ)(sinα-sinβ)(6分)
=cos2α-cos2β+sin2α-sin2β
=0,
∴(
a
+
b
)⊥(
a
-
b
).(8分)
(III)∵k
a
+
b
=(kcosαβ,ksinα+sinβ)

a
-k
b
=(cosα-kcosβ,sinα-ksinβ),(10分)
|k
a
+
b
|  =
(kcosα+cosβ)2+(ksinα+sinβ)2

=
k2+1+2kcos(β-α)
,(12分)
|
a
-k
b
|  =
(cosα-kcosβ)2+(sinα-ksinβ)2

=
1-2kcos(β-α)+k2

∵|k
a
+
b
|=|
a
-k
b
|,
k2+1+2kcos(β-α)
=
1-2kcos(β-α)+k2

整理,得2kcos(β-α)=-2kcos(β-α)
又k≠0,∴cos(β-α)=0
∵0<α<β<π,
∴0<β-α<π,
β-α=
π
2
.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα)
b
=(cosβ,sinβ)
,其中0<α<β<π.
(1)求证:
a
+
b
a
-
b
互相垂直;
(2)若k
a
+
.
b
a
-k
.
b
的长度相等,求α-β的值(k为非零的常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•静安区一模)(文)已知
a
=(cosα,3sinα),
b
=(3cosβ,sinβ),(0<β<α<
π
2
)
是平面上的两个向量.
(1)试用α、β表示
a
b

(2)若
a
b
=
36
13
,且cosβ=
4
5
,求α的值(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosθ,sinθ),
b
=(cosα,sinα)
,则下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=
cosωx,sinωx
b
=
cosωx+
3
sinωx,
3
cosωx-sinωx
(ω>0),函数f(x)=
a
b
的最小正周期为π
(1)求函数f(x)的单调递减区间及对称中心;
(2)求函数f(x)在区间
π
4
π
2
上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•朝阳区一模)已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<α<β<π

(I)求|
a
|
的值;
(II)求证:
a
+
b
a
-
b
互相垂直;
(III)设|k
a
+
b
|=|
a
-k
b
|,k∈R
且k≠0,求β-α的值.

查看答案和解析>>

同步练习册答案