精英家教网 > 高中数学 > 题目详情
9.如图,已知椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1,圆O:x2+y2=13,椭圆C的左右焦点分别为F1、F2,过椭圆上一点P和原点O作直线l交圆O于M,N两点,若|PF1|•|PF2|=6,则|PM|•|PN|的值为(  )
A.7B.8C.10D.12

分析 由椭圆的定义及条件有$\left\{\begin{array}{l}{|P{F}_{1}|+|P{F}_{2}|=6}\\{|P{F}_{1}||P{F}_{2}|=6}\end{array}\right.$,可解出|PF1|,|PF2|,设P(x,y),且${F}_{1}(-\sqrt{6},0),{F}_{2}(\sqrt{6},0)$,从而可以求出P点的坐标$(\frac{3}{\sqrt{2}},\frac{\sqrt{3}}{\sqrt{2}})$,这样便可写出直线PO的方程,而联立圆的方程便可得出M,N的坐标,从而可以求出|PM|•|PN|的值.

解答 解:根据条件,$\left\{\begin{array}{l}{|P{F}_{1}|+|P{F}_{2}|=6}\\{|P{F}_{1}||P{F}_{2}|=6}\end{array}\right.$;
解得$|P{F}_{1}|=3+\sqrt{3},|P{F}_{2}|=3-\sqrt{3}$;
设P(x,y),则:$\left\{\begin{array}{l}{(x+\sqrt{6})^{2}+{y}^{2}=(3+\sqrt{3})^{2}}\\{(x-\sqrt{6})^{2}+{y}^{2}=(3-\sqrt{3})^{2}}\end{array}\right.$;
解得$\left\{\begin{array}{l}{x=\frac{3}{\sqrt{2}}}\\{y=\frac{\sqrt{3}}{\sqrt{2}}}\end{array}\right.$,$P(\frac{3}{\sqrt{2}},\frac{\sqrt{3}}{\sqrt{2}})$;
∴直线PO的方程为$y=\frac{\sqrt{3}}{3}x$,带入圆的方程并整理得:
${x}^{2}=\frac{39}{4}$;
∴$x=±\frac{\sqrt{39}}{2}$,y=$±\frac{\sqrt{13}}{2}$;
∴$M(\frac{\sqrt{39}}{2},\frac{\sqrt{13}}{2}),N(-\frac{\sqrt{39}}{2},-\frac{\sqrt{13}}{2})$;
∴$|PM|•|PN|=\sqrt{(\frac{3}{\sqrt{2}}-\frac{\sqrt{39}}{2})^{2}+(\frac{\sqrt{3}}{\sqrt{2}}-\frac{\sqrt{13}}{2})^{2}}$$•\sqrt{(\frac{3}{\sqrt{2}}+\frac{\sqrt{39}}{2})^{2}+(\frac{\sqrt{3}}{\sqrt{2}}+\frac{\sqrt{13}}{2})^{2}}$=$\sqrt{19-2\sqrt{78}}•\sqrt{19+2\sqrt{78}}=7$.
故选A.

点评 考查椭圆的标准方程,椭圆的定义,以及两点间距离公式,直线的点斜式方程,数形结合解题的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.某蒸汽机上的飞轮直径为20cm,每分钟按顺时针方向旋转180转,则飞轮每秒钟转过的弧度数是-6π;轮周上的一点每秒钟经过的弧长为60πcm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=sinx-1的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为不共线的非零向量,如果$\overrightarrow{a}$=4$\overrightarrow{{e}_{1}}$-$\frac{2}{5}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$-$\frac{1}{10}$$\overrightarrow{{e}_{2}}$,试判断$\overrightarrow{a}$,$\overrightarrow{b}$是否共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设A,B,C是空间任意三点,下列结论错误的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$B.$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=0C.$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{CB}$D.$\overrightarrow{AB}$=-$\overrightarrow{BA}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作倾斜角为45°的直线l与双曲线右支交于A、B两点,当a≤|AB|≤4a时,双曲线C的离心率的取值范围为(  )
A.[$\frac{\sqrt{30}}{5}$,$\frac{\sqrt{6}}{2}$]B.(1,$\frac{\sqrt{6}}{2}$]C.(1,$\frac{\sqrt{30}}{5}$]D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在直角坐标系中,O是原点,A($\sqrt{3}$,-1),将点A绕O顺时针旋转45°到B点,则点B的坐标为($\frac{\sqrt{6}-\sqrt{2}}{2}$,$\frac{\sqrt{2}+\sqrt{6}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0)的上顶点为A,下顶点为B,左顶点为C,F为右焦点,过F作与AC平行的直线交椭圆于M、N两点.
(1)若直线BF的斜率是直线AC的斜率的3倍,求椭圆的离心率.
(2)若$\overrightarrow{OM}$+$\overrightarrow{ON}$=$\overrightarrow{OE}$,点E在椭圆上,且椭圆的长轴长为4,求椭圆的方程;
(3)若$\overrightarrow{MF}$=2$\overrightarrow{FN}$,$\overrightarrow{CP}$=$\overrightarrow{PA}$;求证:直线FP的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证:平面BCE⊥平面CDE;
(Ⅱ)求平面BCE与平面ACD所成锐二面角的大小.

查看答案和解析>>

同步练习册答案