已知
(1)求函数在上的最小值;
(2)对一切恒成立,求实数的取值范围;
(3)证明:对一切,都有成立.
(1);(2);(3)详见解析
解析试题分析:(1)先求的根得,然后讨论与定义域的位置,分别考虑其单调性,因为,故只有两种情况①,此时0,最小值为;②,此时递减,递增,故最小值为;(2)将不等式参变分离得,,记函数,只需求此函数的最小值即可;(3)证明,一般可构造差函数或商函数,即,或(需考虑的符号),然后只需考虑函数的最值,如果上述方法不易处理,也可说明,虽然这个条件不是的等价条件,但是有此条件能充分说明成立,该题可以先求先将不等式恒等变形为,然后分别求的最小值和函数
的最大值即可.
试题解析:(1)由已知知函数的定义域为,,
当单调递减,当单调递增.
①当时,没有最小值;
②当,即时,;
③当即时,在上单调递增,;
(2),则,
设,则,
①单调递减,②单调递增,
,对一切恒成立,.
(3)原不等式等价于,
由(1)可知的最小值是,当且仅当时取到,
设,则,
易知,当且仅当时取到,
从而对一切,都有成立.
考点:1、导数在单调性方面的应用;2、利用导数求函数的最值.
科目:高中数学 来源: 题型:解答题
已知函数,()
(Ⅰ)若函数存在极值点,求实数的取值范围;
(Ⅱ)求函数的单调区间;
(Ⅲ)当且时,令,(),()为曲线上的两动点,O为坐标原点,能否使得是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>.
(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若函数满足:在定义域内存在实数,使(k为常数),则称“f(x)关于k可线性分解”.
(Ⅰ)函数是否关于1可线性分解?请说明理由;
(Ⅱ)已知函数关于可线性分解,求的取值范围;
(Ⅲ)证明不等式:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com