精英家教网 > 高中数学 > 题目详情
6.已知数列{an}的前n项和为Sn,点($\sqrt{{a}_{n}},{S}_{n}$)在曲线y=2x2-2上
(1)求证:数列{an}是等比数列;
(2)设数列{bn}满足bn=an+1-an,求数列{bn}的前n项和Tn

分析 (1)运用数列的通项和求和的关系,结合等比数列的定义即可得证;
(2)求出bn,即可求得数列{bn}的前n项和Tn

解答 (1)证明:由于点($\sqrt{{a}_{n}},{S}_{n}$,Sn)在曲线y=2x2-2上.
则Sn=2an-2,
n=1时,a1=S1=2a1-2,解得a1=2,
当n>1时,Sn-1=2an-1-2,
可得Sn-Sn-1=2an-2an-1=an
即为an=2an-1
可得数列{an}是首项为2,公比为2的等比数列;
(2)an=a1qn-1=2n
bn=an+1-an=2n+1-2n=2n
数列{bn}的前n项和Tn=$\frac{2(1-{2}^{n})}{1-2}$=2n+1-1.

点评 本题考查数列的通项和求和的关系,同时考查等比数列的定义和通项及求和公式的运用,等比数列求数列的和的方法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求下列函数的值域:y=$\frac{2x}{3x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}中,有a1=1,an+1=$\frac{1}{3}$Sn,(n∈N*),求:
(1)数列{an}的通项公式;
(2)a2+a4+a6+…+a2n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(-1,0),若t$\overrightarrow{a}$+$\overrightarrow{b}$(t∈R)的模在[$\frac{\sqrt{2}}{2}$,1]之间取值时,实数t的取值范围[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=a2+logax(a>0且a≠1)在[1,2]上的最大值和最小值之和为loga2+6,则a的取值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的三个内角A,B,C的对边分别是a,b,c,∠B=30°,(a-b)(a-2b)<0,则△ABC解的情况是两解(填:一解、两解或无解)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l与圆O:x2+y2=1交于A,B两点,且|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|,则|$\overrightarrow{AB}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=ex+3x的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=2x-x2(x∈[0,3])的最大值M与最小值m的和等于(  )
A.-1B.0C.1D.-2

查看答案和解析>>

同步练习册答案