精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式的定义域为集合A,则集合A∩Z中元素的个数是________.

5
分析:由函数f(x)=的定义域为集合A,知A={x|3-2x-x2≥0}={x|-3≤x≤1},由此能求出集合A∩Z中元素的个数.
解答:∵函数f(x)=的定义域为集合A,
∴A={x|3-2x-x2≥0}
={x|x2+2x-3≤0}
={x|-3≤x≤1},
∴A∩Z={-3,-2,-1,0,1},
故集合A∩Z中元素的个数是5个.
故答案为:5.
点评:本题考查集合的交集及其运算,是基础题.解题时要认真审题,仔细解答,注意一元二次不等式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
2x
2x+
2
的图象上两点P1(x1,y1) P2(x2,y2),若
OP
=
1
2
OP1
+
OP2
),且点P的横坐标为
1
2
(1)求证:P点的纵坐标为定值,并求出这个定值;(2)若Sn=
n
i=1
f(
i
n
)
,n∈N*,求Sn
(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}的前n项和,若Tn<a(Sn+1+
2
)对一切n∈N*都成立,试求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+
1x+b
(a,b∈Z),曲线y=f(x)在点(2,f(2)处的切线方程为y=3.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x三角形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+
1x+b
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(Ⅰ)求f(x)的解析式,并判断函数y=f(x)的图象是否为中心对称图形?若是,请求其对称中心;否则说明理由.
(II)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.
(III) 将函数y=f(x)的图象向左平移一个单位后与抛物线y=ax2(a为非0常数)的图象有几个交点?(说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果对任意x∈[1,2],f′(x)>a2恒成立,求实数a的取值范围;
(II)设函数f(x)的两个极值点分别为x1,x2判断下列三个代数式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有几个为定值?并且是定值请求出;若不是定值,请把不是定值的表示为函数g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-
bx
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(x)-t2+t<0对一切x∈(1,4)恒成立,求t的取值范围;
(Ⅲ)证明:曲线f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为一值,并求此定值.

查看答案和解析>>

同步练习册答案