已知{an}为等差数列,且a3=-6,a6=0.
(1)求{an}的通项公式;
(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和.
科目:高中数学 来源: 题型:
已知全集U={﹣1,0,1,2,3,4},A={﹣1,0,2,4},则∁UA=()
A. φ B. {0,2,4} C. {1,3} D. {﹣1,1,3}
查看答案和解析>>
科目:高中数学 来源: 题型:
下列向量中,可以作为基底的是()
A.
=(0,0),
=(1,﹣2) B.
=(2,﹣3),
=(﹣
,
)
C.
=(3,5),
=(6,10) D.
=(1,﹣2),
=(5,7)
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数f(x)=ax﹣(k﹣1)a﹣x(a>0且a≠1)是定义域为R的奇函数.
(1)若f(1)>0,试判断函数f(x)的单调性,并求使不等式f(sin2θ+cos2θ)+f(1﹣tcosθ)<0对所有的θ∈(0,
)均成立的t的取值范围;
(2)若f(1)=
,g(x)=a2x+a﹣2x﹣2mf(x),且g(x)在[1,+∞)上的最小值为﹣1,求m的值.
查看答案和解析>>
科目:高中数学 来源:2014-2015学年江苏省扬州市高三上学期期末理科数学试卷(解析版) 题型:解答题
射击测试有两种方案,方案1:先在甲靶射击一次,以后都在乙靶射击;方案2:始终在乙靶射击,某射手命中甲靶的概率为
,命中一次得3分;命中乙靶的概率为
,命中一次得2分,若没有命中则得0分,用随机变量
表示该射手一次测试累计得分,如果
的值不低于3分就认为通过测试,立即停止射击;否则继续射击,但一次测试最多打靶3次,每次射击的结果相互独立。
(1)如果该射手选择方案1,求其测试结束后所得分
的分布列和数学期望E
;
(2)该射手选择哪种方案通过测试的可能性大?请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com