精英家教网 > 高中数学 > 题目详情
已知f(x)=ax3+3x2-x+1,a∈R.
(Ⅰ)当a=-3时,求证:f(x)=在R上是减函数;
(Ⅱ)如果对?x∈R不等式f′(x)≤4x恒成立,求实数a的取值范围.
(Ⅰ)当a=-3时,f(x)=-3x3+3x2-x+1,
∵f′(x)=-9x2+6x-1=-(3x-1)2≤0,
∴f(x)在R上是减函数;
(Ⅱ)∵?x∈R不等式f′(x)≤4x恒成立,
即?x∈R不等式3ax2+6x-1≤4x恒成立,
∴?x∈R不等式3ax2+2x-1≤0恒成立,
当a≥0时,?x∈R,3ax2+2x-1≤0不恒成立,
当a<0时,?x∈R不等式3ax2+2x-1≤0恒成立,
即△=4+12a≤0,
∴a≤-
1
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx+2,且f(-5)=3,则f(5)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3-bx+1且f(-4)=7,则f(4)=
-5
-5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx+1,f(-2)=2,则f(2)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bsinx+6,a、b∈R,若f(3)=10,则f(-3)=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(x)=ax3+bx5+cx3+dx-6,F(-2)=10,则F(2)的值为(  )
A、-22B、10C、-10D、22

查看答案和解析>>

同步练习册答案