精英家教网 > 高中数学 > 题目详情

已知向量数学公式=(sin x,2cos x),数学公式=(2sin x,sin x),函数f(x)=数学公式数学公式-1.
(1)求函数f(x)的最小正周期和最大值;
(2)在给出的直角坐标系中,画出f(x)在区间[0,π]上的图象.

解:(1)f(x)=2sin2x+2sin xcos x-1=sin 2x-cos 2x=sin(2x-
∴T==π,…(3分)
当2x-=2kπ+,即x=kπ+ (k∈Z)时,函数f(x)取得最大值.…(6分)
(2)列表:
2x--0π
x0π
y-100--1
…(9分)
描点连线,得函数图象如图所示:

…(12分)
分析:(1)根据所给的两个向量的坐标和函数的表示式,根据两个向量的数量积的坐标形式写出三角函数式,利用幅角公式写出最简形式,求出周期和最大值.
(2)先列表,再在直角坐标系中画出函数y=f(x)在区间[0,π]上的图象.
点评:本题考查三角函数的性质,是一个以向量为载体的题目,这种题目经常出现在高考卷中,是一个典型的三角函数解答题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinβ,1),
b
=(2,-1)且
a
b
π
2
<β<π,则β等于
5
6
π
5
6
π
弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinωx,-cosωx),
b
=(
3
cosωx,cosωx)(ω>0),函数f(x)=
a
b
+
1
2
,且函数f(x)=
3
sinωxcosωx-cos2ωx+
1
2
的图象中任意两相邻对称轴间的距离为π.
(1)求ω的值;
(2)已知在△ABC中,角A,B,C所对的边分别为a,b,c,f(C)=
1
2
,且c=2
19
,△ABC的面积S=2
3
,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(1,2)
(1)若
a
b
,求tanθ的值;
(2)若
a
b
,且θ为第Ⅲ象限角,求sinθ和cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)已知向量
a
=(sinα,1),
b
=(2,2cosα-
2
),(
π
2
<α<π
),若
a
b
,则sin(α-
π
4
)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(cosθ,
3
),且
a
b
,其中θ∈(0,
π
2
).
(1)求θ的值;
(2)若sin(x-θ)=
3
5
,0<x<
π
2
,求cosx的值.

查看答案和解析>>

同步练习册答案