精英家教网 > 高中数学 > 题目详情
1.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1,F2,过F1的直线l交椭圆与两点A,B,则|AF2|+|BF2|的最大值为(  )
A.6B.5C.4D.3

分析 由题意方程求得椭圆的半焦距,结合椭圆定义求得|AF2|+|BF2|+|AB|=4a=8,则|AF2|+|BF2|=8-|AB|,再求出当AB垂直于x轴时的最小值,则|AF2|+|BF2|的最大值可求.

解答 解:由题意可知:椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1焦点在x轴上,a=2,b=$\sqrt{3}$,c=1,
由椭圆的定义可知:|AF2|+|AF2|=2a,|BF1|+|BF2|=2a,则|AF2|+|BF2|+|AB|=4a=8,
|AF2|+|BF2|=8-|AB|,
∵当且仅当AB⊥x轴时,|AB|取得最小值,
当x=-c=-1,$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,解得:y=±$\frac{3}{2}$,
∴|AB|min=3,
∴|AF2|+|BF2|的最大值为8-3=5.

点评 本题考查椭圆的定义及标准方程,椭圆通径的求法,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2-x-6>0},则下列属于集合A的元素是(  )
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知2sinxtanx=3,(-π<x<0),则x=(  )
A.$-\frac{π}{3}$B.$-\frac{π}{6}$C.$-\frac{5π}{6}$D.$-\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知实数x满足9x-4×3x+1+27≤0且f(x)=(log2$\frac{x}{2}$)(log${\;}_{\sqrt{2}}$$\frac{\sqrt{x}}{2}$).
(Ⅰ)求实数x的取值范围;
(Ⅱ)求f(x)的最大值和最小值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知sinA-sinB=$\frac{1}{3}$sinC,3b=2a,2≤a2+ac≤18,设△ABC的面积为S,p=$\sqrt{2}$a-S,则p的最大值是$\frac{9\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知c>0,设p:函数y=lg[(1-c)x-1]在其定义域内为增函数,q:不等式x+|x-2c|>1的解集为R,若“p∨q”为真,“p∧q”为假,求实数c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知(-1,y1),(-2,y2),(-4,y3)是抛物线y=-2x2-8x+m上的点,则(  )
A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=x3-ax在(1,3)上存在单调增区间,则a的取值范围是(-∞,27),函数f(x)=x3-ax在(1,3)上单调增,则a的取值范围是(-∞,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,设铁路AB长为50,BC⊥AB,且BC=10,为将货物从A运往C,现在AB上距点B为x的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.
(1)将总运费y表示为x的函数;
(2)如何选点M才使总运费最小?

查看答案和解析>>

同步练习册答案