分析 根据题意,利用正弦定理求得a、b、c的关系,以及a的取值范围,再利用余弦定理求得cosB、sinB 的值,从而求得△ABC的面积S,写出p的解析式,利用二次函数的性质即可求得p的最大值.
解答 解:△ABC中,由sinA-sinB=$\frac{1}{3}$sinC,
利用正弦定理得c=3a-3b,
再根据3b=2a,2≤a2+ac≤18,
可得c=a,b=$\frac{2a}{3}$,1≤a≤3.
由余弦定理得 b2=$\frac{4{a}^{2}}{9}$=a2+a2-2a•a•cosB,
求得cosB=$\frac{7}{9}$,
∴sinB=$\frac{4\sqrt{2}}{9}$,
∴△ABC的面积为S=$\frac{1}{2}$•ac•sinB=$\frac{1}{2}$a2•$\frac{4\sqrt{2}}{9}$=$\frac{2\sqrt{2}}{9}$•a2,
故p=$\sqrt{2}$a-S=$\sqrt{2}$a-$\frac{2\sqrt{2}}{9}$a2=$\frac{9\sqrt{2}}{8}$-$\frac{2\sqrt{2}}{9}$(a-$\frac{9}{4}$)2,
利用二次函数的性质结合a的范围1≤a≤3,可得:
当a=$\frac{9}{4}$时,p取得最大值是$\frac{9\sqrt{2}}{8}$.
故答案为:$\frac{9\sqrt{2}}{8}$.
点评 本题主要考查了正弦定理和余弦定理的应用问题,也考查了二次函数的最值问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3+2\sqrt{2}}}{6}$ | B. | 1 | C. | $\frac{11}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com