![]()
(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;
(2)当
=λ
时,求λ的最大值.
剖析:(1)求椭圆方程即求a、b的值,由l1与l2的夹角为60°易得
=
,由双曲线的距离为4易得a2+b2=4,进而可求得a、b.
(2)由
=λ
,欲求λ的最大值,需求A、P的坐标,而P是l与l1的交点,故需求l的方程.将l与l2的方程联立可求得P的坐标,进而可求得点A的坐标.将A的坐标代入椭圆方程可求得λ的最大值.
解:(1)∵双曲线的渐近线为y=±
x,两渐近线夹角为60°,
又
<1,
∴∠POx=30°,即
=tan30°=
.
∴a=
b.
又a2+b2=4,
∴a2=3,b2=1.
故椭圆C的方程为
+y2=1.
(2)由已知l:y=
(x-c),与y=
x解得P(
,
),
由
=λ
得A(
,
).
将A点坐标代入椭圆方程得
(c2+λa2)2+λ2a4=(1+λ)2a2c2.
∴(e2+λ)2+λ2=e2(1+λ)2.
∴λ2=
=-[(2-e2)+
]+3≤3-2
.
∴λ的最大值为
-1.
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| a2+b2 |
| ||
| 3 |
| 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| 2 |
| ||
| 2 |
| OP |
| OM |
| ON |
| 1 |
| 2 |
| y | 2 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| y2 |
| a2 |
| x2 |
| b2 |
| ||
| 2 |
| a2 |
| c |
| ||
| 2 |
| AP |
| PB |
| OA |
| OB |
| OP |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x 2 |
| 4 |
| y2 |
| 3 |
| m |
| OA |
| OB |
| m |
| OF |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com