精英家教网 > 高中数学 > 题目详情

数学公式,其中f(x)=lnx.
(Ⅰ)若g(x)在其定义域内为增函数,求实数p的取值范围;
(Ⅱ)证明:f(x)≤x-1;
(Ⅲ)证明:数学公式

解:(Ⅰ)∵(x>0),
.(1分)
令h(x)=px2-2x+p,要使g(x)在(0,+∞)为增函数,
只需h(x)在(0,+∞)上满足:h(x)≥0恒成立,
即px2-2x+p≥0.即 上恒成立.
又∵,(4分)
∴p≥1.(5分)

(Ⅱ)证明:要证lnx≤x-1,
即证lnx-x+1≤0(x>0),
设k(x)=lnx-x+1,.(6分)
当x∈(0,1]时,k'(x)>0,∴k(x)为单调递增函数;
当x∈(1,+∞)时,k'(x)<0,∴k(x)为单调递减函数;
∴k(x)max=k(1)=0.(9分)
即lnx-x+1≤0,∴lnx≤x-1.(10分)

(Ⅲ)由(Ⅱ)知lnx≤x-1,又x>0,

∵n∈N*,n≥2,可令x=n2,得.(12分)

=
=
==.(14分)
分析:(Ⅰ)要使g(x)在(0,+∞)为增函数,它的导数大于0即可,即 上恒成立,利用
基本不等式求出的最大值,p应大于或等于此最大值.
(Ⅱ)只要证明k(x)=lnx-x+1≤0即可,利用它的导数求出函数k(x)的最大值为0,可以得出结论.
(Ⅲ)因为 lnx≤x-1,又x>0,换元可得 ,即 ,利用此不等式
化简要证的不等式的左边,再用放缩法可证它小于不等式的右边.
点评:本题考查利用函数的导数判断函数的单调性、求函数的最值,以及利用放缩法证明不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•绍兴模拟)已知函数f(x)=e2x-2a
x
 
2
+2e2x
,其中e为自然对数的底数.
(I)若函数f(x)在[1,2]上为单调增函数,求实数a的取值范围;
(II)设曲线y=f(x)在点P(1,f(1))处的切线为l.试问:是否存在正实数a,使得函数y=f(x)的图象被点P分割成的两部分(除点P外)完全位于切线l的两侧?若存在,请求出a满足的条件,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①半径为2,圆心角的弧度数为
1
2
的扇形的周长为5;    
②若向量
a
b
b
c
,则
a
c

③设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β∈R,且ab≠0,α≠kπ (k∈Z).则f(2012)+f(2013)=0.
④若直线l过点A(2,3),且垂直于向量a=(2,1),则其方程为2x+y-7=0
其中真命题的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx.
(Ⅰ)若直线l过点(0,1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅱ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式,其中e为自然对数的底数.
(I)若函数f(x)在[1,2]上为单调增函数,求实数a的取值范围;
(II)设曲线y=f(x)在点P(1,f(1))处的切线为l.试问:是否存在正实数a,使得函数y=f(x)的图象被点P分割成的两部分(除点P外)完全位于切线l的两侧?若存在,请求出a满足的条件,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

  已知函数f(x)=(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(l,f(l))处的切线与x轴平行.

  (Ⅰ)求k的值;

  (Ⅱ)求f(x)的单调区间;

  (Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意0<x<1,g(x)<1 +e-2

查看答案和解析>>

同步练习册答案