精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xlnx.
(Ⅰ)若直线l过点(0,1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅱ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)
分析:(Ⅰ)由于(0,1)不是切点,故先假设切点,利用切点处得导数为切线的斜率,再根据过(0,1),从而可求切点的坐标,进一步可求切线的方程;
(Ⅱ)先确定函数的单调区间,再利用区间进行分类讨论,从而求出函数再区间上的最小值.
解答:解:(Ⅰ)f′(x)=lnx+1,x>0,(2分)
设切点坐标为(x0,y0),则y0=x0lnx0,切线的斜率为lnx0+1,所以lnx0+1= 
y0+1
x0
,(4分)
解得x0=1,y0=0,所以直线l的方程为x-y-1=0.(6分)
(Ⅱ)g(x)=xlnx-a(x-1),则g′(x)=lnx+1-a,(7分)
解g′(x)=0,得x=ea-1,所以在区间(0,ea-1)上,g(x)为递减函数,在区间(ea-1,+∞)上,g(x)为递增函数.(8分)
当ea-1≤1,即a≤1时,在区间[1,e]上,g(x)为递增函数,所以g(x)最小值为g(1)=0.(9分)
当1<ea-1<e,即1<a<2时,g(x)的最小值为g(ea-1)=a-ea-1.(10分)
当ea-1≥e,即a≥2时,在区间[1,e]上,g(x)为递减函数,
所以g(x)最小值为g(e)=a+e-ae.(11分)
综上,当a≤1时,g(x)最小值为0;当1<a<2时,g(x)的最小值为a-ea-1;当a≥2时,g(x)最小值为a+e-ae.(12分)
点评:本题考查导数的几何意义,考查利用导数研究函数的最值,应用导数的几何意义求切线时,注意点是否为切点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案