精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)
(1)当a=1,b=2时,f(x)=(x-1)2+(
2
x
-1)
2
=(x2+
4
x2
)-2(x+
2
x
)+2
x+
2
x
=t(t≥2
2
),y=t2-2t-2=(t-1)2-3
∴函数在[2
2
,+∞)上单调增,∴y≥6-4
2

∴f(x)的最小值为6-4
2

(2)f(x)≥2m-1对任意0<a<b恒成立,等价于f(x)min≥2m-1
f(x)=(
x
a
-1)
2
+(
b
x
-1)
2
=(
x
a
+
b
x
)
2
-2(
x
a
+
b
x
)-
2b
a
+2
x
a
+
b
x
=t(t≥2
b
a
),则y=t2-2t-
2b
a
+2
∴函数在[2
b
a
,+∞)上单调增,∴y≥2(
b
a
-2
b
a
+1)
>0
∴0≥2m-1
∴m≤0;
(3)因为
1
2
(a2+b2)≥(
a+b
2
)
2
,所以(
x
a
-1)
2
+(
b
x
-1)
2
1
2
(
x
a
+
b
x
-2)
2
>2(
b
a
-1)
2

当a=k2,b=(k+c)2时,
b
a
=(1+
c
k
)
2
;当a=(k+c)2,b=(k+2c)2时,
b
a
=(1+
c
k+c
)
2

所以f1(x)+f2(x)>2(
c
k
2+2(
c
k+c
2)>
4c2
k(k+c)
(因为0<a<b,所以等号取不到)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案