精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,角A、B、C的对边分别为a、b、c,已知(b2+c2-a2)tanA=
3
bc

(Ⅰ)求角A;
(Ⅱ)若a=2,求△ABC面积S的最大值.
分析:(1)根据余弦定理和同角三角函数的基本关系可求出sinA的值,再根据是锐角三角形可确定角A的值.
(2)将a,A的值代入(b2+c2-a2)tanA=
3
bc
.得到关系b,c的关系式,再由基本不等式可求最大值.
解答:解:(I)由已知得
b2+c2-a2
2bc
sinA
cosA
=
3
2
?sinA
3
2

又在锐角△ABC中,所以A=60°,
(II)因为a=2,A=60°所以b2+c2=bc+4,S=
1
2
bcsinA=
3
4
bc

而b2+c2≥2bc?bc+4≥2bc?bc≤4
S=
1
2
bcsinA=
3
4
bc≤
3
4
×4=
3

所以△ABC面积S的最大值等于
3
点评:本题主要考查余弦定理和基本不等关系的应用.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且tanC=
aba2+b2-c2

(Ⅰ)求角C大小;
(Ⅱ)当c=1时,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•张掖模拟)在锐角△ABC中,角A、B、C所对的边分别为a、b、c.且
a-c
b-c
=
sinB
sinA+sinC

(1)求角A的大小及角B的取值范围;
(2)若a=
3
,求b2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函数f(x)的表达式,并指出f(x)的单调递减区间;
(2)在锐角△ABC中,角A、B、C所对的边分别为a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知b2=ac且sinAsinC=
34

(Ⅰ)求角B的大小.
(Ⅱ)求函数f(x)=sin(x-B)+sinx(0≤x<π)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知cos2C=-
3
4

(Ⅰ)求sinC;
(Ⅱ)当c=2a,且b=3
7
时,求a及△ABC的面积.

查看答案和解析>>

同步练习册答案