精英家教网 > 高中数学 > 题目详情
已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函数f(x)的表达式,并指出f(x)的单调递减区间;
(2)在锐角△ABC中,角A、B、C所对的边分别为a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面积S.
分析:(1)利用向量的坐标运算可求得f(x)的表达式,再利用正弦函数的单调性即可求得f(x)的单调递减区间;
(2)由(1)知f(x)=-
2
sin(x+
π
4
),结合f(A)=-
2
可求得A,从而可求得△ABC的面积S.
解答:解:(1)依题意知,2sin
x
2
sin(
π
2
-
x
2
)-[cosx+f(x)]×(-1)=0,
整理得:f(x)=-(sinx+cosx)
=-
2
sin(x+
π
4
);
由2kπ-
π
2
≤x+
π
4
≤2kπ+
π
2
,k∈Z得:
2kπ-
4
≤x≤2kπ+
π
4
,k∈Z
∴f(x)的单调递减区间为[2kπ-
4
,2kπ+
π
4
],k∈Z.
(2)∵f(A)=-
2
sin(A+
π
4
)=-
2

∴sin(A+
π
4
)=1,而△ABC为锐角三角形,
∴A=
π
4

又bc=8,
∴△ABC的面积S=
1
2
bcsinA=
1
2
×8×sin
π
4
=2
2
点评:本题考查平面向量数量积的坐标运算,考查解三角形,求得f(x)的表达式是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
OP
=(cosx,sinx),
OQ
=(-
3
3
sinx,sinx)
,定义函数f(x)=
OP
OQ

(1)求f(x)的最小正周期和最大值及相应的x值;
(2)当
OP
OQ
时,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2,1),
OA
=(1,7),
OB
=(5,1)
,设M是直线OP上任意一点(O为坐标原点),则
MA
MB
的最小值为(  )
A、-8
B、
5
C、5
2
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2cosx+1,cos2x-sinx+1),
OQ
=(cosx,-1),定义f(x)=
OP
OQ

(1)求函数f(x)的最小正周期;
(2)若x∈(0,2π),当
OP
OQ
<-1
时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头一模)已知向量
m
=(-2sin(π-x),cosx)
n
=(
3
cosx,2sin(
π
2
-x))
,函数f(x)=1-
m
n

(1)求函数f(x)的解析式;
(2)当x∈[0,π]时,求f(x)的单调递增区间;
(3)说明f(x)的图象可以由g(x)=sinx的图象经过怎样的变换而得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)已知向量
OP
=(x,y),
OQ
=(y,2)
,曲线C上的点满足:
OP
OQ
=2x
.点M(xk,xk+1)在曲线C上,且xk≠0,x1=1,数列{an}满足:ak=
1
xk
,(k,n∈N+)

(1)求数列{an}通项公式;
(2)若数列{bn}满足bn=7-2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

同步练习册答案