精英家教网 > 高中数学 > 题目详情
已知向量
OP
=(cosx,sinx),
OQ
=(-
3
3
sinx,sinx)
,定义函数f(x)=
OP
OQ

(1)求f(x)的最小正周期和最大值及相应的x值;
(2)当
OP
OQ
时,求x的值.
分析:(1)求f(x)的最小正周期和最大值及相应的x值;由题设条件可以看出,要先用数量积公式求出函数f(x)的表达式,再利用三角函数的相关公式进行整理变形,再根据化简后的形式选用相应的公式求最值与周期以及取到最值时相应的x的值.
(2)由两向量垂直可得f(x)=0,将表达式代入解三角函数方程,求角.
解答:解:(1)由题意f(x)=-
3
3
sinxcosx+sin2x
=
1
2
-
3
3
(
1
2
sin2x+
3
2
cos2x)
=
1
2
-
3
3
sin(2x+
π
3
)

ω=2,T=|
ω
|=π

x=kπ-
12
,k∈Z
时,f(x)取最大值
1
2
+
3
3

(2)当
OP
OQ
时,f(x)=0,即
1
2
-
3
3
sin(2x+
π
3
)=0

故有sin(2x+
π
3
)=
3
2

解得2x+
π
3
=2kπ+
π
3
或  2x+
π
3
=2kπ+
3

x=kπ+
π
6
或x=kπ,k∈Z.
点评:本题是向量与三角相结合的一个题,此类题的特点一般是先用向量的相关知识建立起三角函数关系,再利用三角函数的相关公式变形为较简单的形式,由三角函数的性质求解,本题考查转化的能力,有较强的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
OP
=(2cosx+1,cos2x-sinx+1),
OQ
=(cosx,-1),定义f(x)=
OP
OQ

(1)求函数f(x)的最小正周期;
(2)若x∈(0,2π),当
OP
OQ
<-1
时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(cosx,-sinx),
OQ
=(
3
sinx,sinx)
,定义函数f(x)=
OP
OQ

(1)求f(x)的最小正周期、最大值及相应的x值;
(2)当x∈[0,π]且
OP
OQ
时,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2sinx,-1),
OQ
=(cosx,cos2x)
,定义函数f(x)=
OP
OQ

(Ⅰ)求函数f(x)的表达式,并指出其最大最小值;
(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源:中山一模 题型:解答题

已知向量
OP
=(cosx,sinx),
OQ
=(-
3
3
sinx,sinx)
,定义函数f(x)=
OP
OQ

(1)求f(x)的最小正周期和最大值及相应的x值;
(2)当
OP
OQ
时,求x的值.

查看答案和解析>>

同步练习册答案