精英家教网 > 高中数学 > 题目详情
已知f(x)=x2-x+k,若log2f(a)=2且f(log2a)=k(a>0且a≠1).
(1)确定k的值;
(2)求
[f(x)]2+9
f(x)
的最小值及对应的x值.
(1)由题设有
log2(a2-a+k)=2①
log22
a-log2a+k=k②

a2-a+k=4①
log2a(log2a-1)=0②

∵a≠1,
∴log2a≠0,由②得log2a-1=0,
∴a=2,代入①解得k=2.
(2)∵k=2,
∴f(x)=x2-x+2=(x-
1
2
2+
7
4
>0.
[f(x)]2+9
f(x)
=f(x)+
9
f(x)
≥2
f(x)•
9
f(x)
=6.
当且仅当f(x)=
9
f(x)
,即[f(x)]2=9时取等号.
∵f(x)>0,
∴f(x)=3时取等号.
即x2-x+2=3,解得x=
5
2

当x=
5
2
时,
[f(x)]2+9
f(x)
取最小值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b(a,b∈R的定义域为[-1,1].
(1)记|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的M=
1
2
时,f(x)
的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+x+1,则f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2x,数列{an}满足a1=3,an+1=f′(an)-n-1,数列{bn}满足b1=2,bn+1=f(bn).
(1)求证:数列{an-n}为等比数列;
(2)令cn=
1
an-n-1
,求证:c2+c3+…+cn
2
3

(3)求证:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)确定k的值;
(2)求f(x)+
9f(x)
的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

同步练习册答案