精英家教网 > 高中数学 > 题目详情
(2010•重庆一模)已知函数f(x)=x3+lg(x+
x2+1
)
,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值(  )
分析:先判断奇偶性和单调性,先由单调性定义由自变量的关系得到函数关系,然后三式相加得解.
解答:解:易证f(x)是R上的奇函数与增函数.
∵x1+x2>0,x2+x3>0,x3+x1>0
∴x1>-x2,x2>-x3,x3>-x1
∴f(x1)>f(-x2),f(x2)>f(-x3),f(x3)>f(-x1
∴f(x1)+f(x2)>0,f(x2)+f(x3)>0,f(x3)+f(x1)>0,
三式相加得:
f(x1)+f(x2)+f(x3)>0
故选B.
点评:本题主要考查函数的奇偶性和单调性的定义,关键是通过变形转化到定义模型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•重庆一模)已知x,y∈R,则“x•y=0”是“x=0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)抛物线y=2x2的交点坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)设集合A={(x,y)|x2+y2≤1},集合B={(x,y)|log|x||y|≤log|y||x|,|x|<1,|y|<1},则在直角坐标平面内,A∩B所表示的平面区域的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)设函数f(x)=-x2+2ax+m,g(x)=
ax

(I)若函数f(x),g(x)在[1,2]上都是减函数,求实数a的取值范围;
(II)当a=1时,设函数h(x)=f(x)g(x),若h(x)在(0,+∞)内的最大值为-4,求实数m的值.

查看答案和解析>>

同步练习册答案