精英家教网 > 高中数学 > 题目详情

过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,如果点M在直线AB的上方,求面积的最大值.

(1)y2=8x,(2,4);(2).

解析试题分析:本题主要考查抛物线的标准方程及其几何性质、韦达定理、点到直线的距离、三角形面积公式、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由题意结合抛物线图象得到M点坐标,代入抛物线方程中,解出P的值,从而得到抛物线的标准方程及M点坐标;第二问,设出A,B点坐标,利用M点,分别得到直线MA和直线MB的斜率,因为两直线倾斜角互补,所以两直线的斜率相加为0,整理得到y1+y2=-8,代入到中得到直线AB的斜率,设出直线AB的方程,利用M点在直线AB上方得到b的范围,令直线与抛物线方程联立,图形有2个交点,所以方程的进一步缩小b的范围,,而用两点间距离公式转化,d是M到直线AB的距离,再利用导数求面积的最大值.
(1)抛物线C的准线x=-,依题意M(4-,4),
则42=2p(4-),解得p=4.
故抛物线C的方程为y2=8x,点M的坐标为(2,4),    3分
(2)设
直线MA的斜率,同理直线MB的斜率
由题设有,整理得y1+y2=-8.
直线AB的斜率.      6分
设直线AB的方程为y=-x+b.
由点M在直线AB的上方得4>-2+b,则b<6.
得y2+8y-8b=0.
由Δ=64+32b>0,得b>-2.于是-2<b<6.    9分

于是
点M到直线AB的距离,则△MAB的面积

设f(b)=(b+2)(6-b)2,则f¢(b)=(6-b)(2-3b).
时,f¢(x)>0;当时,f¢(x)<0.
时,f(b)最大,从而S取得最大值.    12分
考点:抛物线的标准方程及其几何性质、韦达定理、点到直线的距离、三角形面积公式、利用导数求函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C:)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右顶点分别为,离心率
(1)求椭圆的方程;
(2)若点为曲线:上任一点(点不同于),直线与直线交于点为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.
(1)如图所示,若,求直线l的方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•陕西)设椭圆C:过点(0,4),离心率为
(Ⅰ)求C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个焦点为,且离心率为
(1)求椭圆方程;
(2)斜率为的直线过点,且与椭圆交于两点,为直线上的一点,若△为等边三角形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右顶点分别为,离心率
(1)求椭圆的方程;
(2)若点为曲线:上任一点(点不同于),直线与直线交于点为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分6分.
已知椭圆过点,两焦点为是坐标原点,不经过原点的直线与椭圆交于两不同点.
(1)求椭圆C的方程;       
(2) 当时,求面积的最大值;
(3) 若直线的斜率依次成等比数列,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案