精英家教网 > 高中数学 > 题目详情
10.若cos($\frac{π}{8}$-α)=$\frac{1}{6}$,则cos($\frac{3π}{4}$+2α)的值为(  )
A.$\frac{17}{18}$B.-$\frac{17}{18}$C.$\frac{18}{19}$D.-$\frac{18}{19}$

分析 利用二倍角公式求出cos($\frac{π}{4}$-2α)的值,再利用诱导公式求出cos($\frac{3π}{4}$+2α)的值.

解答 解:∵cos($\frac{π}{8}$-α)=$\frac{1}{6}$,
∴cos($\frac{π}{4}$-2α)=2cos2($\frac{π}{8}$-α)-1
=2×${(\frac{1}{6})}^{2}$-1
=-$\frac{17}{18}$,
∴cos($\frac{3π}{4}$+2α)=cos[π-($\frac{π}{4}$-2α)]
=-cos($\frac{π}{4}$-2α)
=$\frac{17}{18}$.
故选:A.

点评 本题考查了余弦二倍角公式与诱导公式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,存在单位向量$\overrightarrow{e}$,使得($\overrightarrow{a}$-$\overrightarrow{e}$)•($\overrightarrow{b}$-$\overrightarrow{e}$)=0,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的取值范围是[$\sqrt{7}$-1,$\sqrt{7}$+1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知平面向量$\overrightarrow{a}$=(4sin(π-α),$\frac{3}{2}$),$\overrightarrow{a}$=(cos$\frac{π}{3}$,cosα),$\overrightarrow{a}$⊥$\overrightarrow{b}$.
(Ⅰ)求tanα的值;
(Ⅱ)求$\frac{1}{1+sinαcosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}满足an+1-an=2,a1=-5,则|a1|+|a2|+…+|a6|=(  )
A.9B.15C.18D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={x|x2-16>0},B={x|-2<x≤6},则A∩B等于(  )
A.(-2,4)B.(4,6]C.(-4,6)D.(-4,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知四边形ABEF于ABCD分别为正方形和直角梯形,平面ABEF⊥平面ABCD,AB=BC=$\frac{1}{2}$AD=1,AB⊥AD,BC∥AD,点M是棱ED的中点.
(1)求证:CM∥平面ABEF;
(2)求三棱锥D-ACF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数(2+i)i的共轭复数的虚部是(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若点P为抛物线$C:{x^2}=\frac{1}{2}y$上的动点,F为抛物线C的焦点,则|PF|的最小值为(  )
A.2B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设a=${∫}_{0}^{π}$(cosx-sinx)dx,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式中含x2项的系数为192.

查看答案和解析>>

同步练习册答案