精英家教网 > 高中数学 > 题目详情
15.如图,已知四边形ABEF于ABCD分别为正方形和直角梯形,平面ABEF⊥平面ABCD,AB=BC=$\frac{1}{2}$AD=1,AB⊥AD,BC∥AD,点M是棱ED的中点.
(1)求证:CM∥平面ABEF;
(2)求三棱锥D-ACF的体积.

分析 (1)几何法:连结AE,BF,交于点O,连结OM,推导出四边形BCMO是平行四边形,由此能证明CM∥平面ABEF.
向量法:以A为原点,AF为x轴,AC为y轴,AB为z轴,建立空间直角坐标系,利用向量法能证明CM∥平面ABEF.
(2)三棱锥D-ACF的体积VD-ACF=VF-ACD,由此能求出结果.

解答 证明:(1)几何法:连结AE,BF,交于点O,连结OM,
∵ABEF是正方形,∴O是AE中点,
∵M是DE中点,∴OM$\underset{∥}{=}$$\frac{1}{2}$AC,
∵ABCD是直角梯形,AB=BC=$\frac{1}{2}$AD=1,
∴BC$\underset{∥}{=}$$\frac{1}{2}$AC,∴BC$\underset{∥}{=}$OM,
∴四边形BCMO是平行四边形,
∴BO∥CM,
∵BO?平面ABEF,CM?平面ABEF,
∴CM∥平面ABEF.
(1)向量法:∵四边形ABEF于ABCD分别为正方形和直角梯形,
平面ABEF⊥平面ABCD,AB=BC=$\frac{1}{2}$AD=1,AB⊥AD,BC∥AD,点M是棱ED的中点.
∴以A为原点,AF为x轴,AC为y轴,AB为z轴,建立空间直角坐标系,
D(0,2,0),E(1,0,1),M($\frac{1}{2},1,\frac{1}{2}$),C(0,1,1),
$\overrightarrow{CM}$=($\frac{1}{2},0,-\frac{1}{2}$),
平面ABEF的法向量$\overrightarrow{n}$=(0,1,0),
∵$\overrightarrow{n}•\overrightarrow{CM}$=0,CM?平面ABEF,∴CM∥平面ABEF.
解:(2)∵点F到平面ACD的距离AF=1,
S△ACD=S梯形ABCD-S△ABC=$\frac{1}{2}(1+2)×1-\frac{1}{2}×1×1$=1,
∴三棱锥D-ACF的体积:
VD-ACF=VF-ACD=$\frac{1}{3}×AF×{S}_{△ACD}$=$\frac{1}{3}×1×1$=$\frac{1}{3}$.

点评 本题考查线面平行的证明,考查三棱锥的体积的求法,考查推理论能力、运算求解能力、空间思维能力,考查数形结合思想、转化化归思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.点P在双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的右支上,其左、右焦点分别为F1、F2,直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,线段PF1的垂直平分线恰好过点F2,则该双曲线的渐近线的斜率为(  )
A.±$\frac{4}{3}$B.±$\frac{3}{4}$C.±$\frac{3}{5}$D.±$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z=1+2i,则$\overline z$=(  )
A.1-2iB.5+4iC.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3. 如图,四棱锥P-ABCD的底面ABCD为矩形,PA⊥底面ABCD,AD=AP=2,AB=2$\sqrt{7}$,E为棱PD的中点.
(Ⅰ)证明:PD⊥平面ABE;
(Ⅱ)求三棱锥C-PBD外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若cos($\frac{π}{8}$-α)=$\frac{1}{6}$,则cos($\frac{3π}{4}$+2α)的值为(  )
A.$\frac{17}{18}$B.-$\frac{17}{18}$C.$\frac{18}{19}$D.-$\frac{18}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.据统计,截至2016年底全国微信注册用户数量已经突破9.27亿,为调查大学生这个微信用户群体中每人拥有微信群的数量,现从某市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量(个)频数频率
0~40.15
5~8400.4
9~1225
13~16ac
16以上5b
合计1001
(Ⅰ)求a,b,c的值及样本中微信群个数超过12的概率;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过12的概率;
(Ⅲ)以(1)中的频率作为概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过12的人数,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造一种标准量器----商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中的x为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有48种不同的分法(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某生产车间的甲、乙两位工人生产同一种零件,这种零件的标准尺寸为85mm,现分别从他们生产的零件中各随机抽取8件检测,其尺寸用茎叶图表示如图(单位:mm),则估计(  )
A.甲、乙生产的零件尺寸的中位数相等
B.甲、乙生产的零件质量相当
C.甲生产的零件质量比乙生产的零件质量好
D.乙生产的零件质量比甲生产的零件质量好

查看答案和解析>>

同步练习册答案