精英家教网 > 高中数学 > 题目详情
3. 如图,四棱锥P-ABCD的底面ABCD为矩形,PA⊥底面ABCD,AD=AP=2,AB=2$\sqrt{7}$,E为棱PD的中点.
(Ⅰ)证明:PD⊥平面ABE;
(Ⅱ)求三棱锥C-PBD外接球的体积.

分析 (Ⅰ)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能证明PD⊥平面ABE.
(Ⅱ)三棱锥C-PBD外接球即以AB,AD,AP为棱的长方体的外接球,由此能求出三棱锥C-PBD外接球的体积.

解答 证明:(Ⅰ)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
P(0,0,2),D(0,2,0),A(0,0,0),B(2$\sqrt{7}$,0,0),E(0,1,1),
$\overrightarrow{PD}$=(0,2,-2),$\overrightarrow{AB}$=(2$\sqrt{7}$,0,0),$\overrightarrow{AE}$=(0,1,1),
$\overrightarrow{PD}$$•\overrightarrow{AB}$=0,$\overrightarrow{PD}•\overrightarrow{AE}$=0,
∴PD⊥AB,PD⊥AE,
∵AB∩AE=A,∴PD⊥平面ABE.
解:(Ⅱ)∵AD,AP,AB两垂直,底面ABCD为矩形,
∴三棱锥C-PBD外接球即以AB,AD,AP为棱的长方体的外接球,
∴三棱锥C-PBD外接球的半径R=$\frac{\sqrt{4+4+28}}{2}$=3,
∴三棱锥C-PBD外接球的体积V=$\frac{4}{3}π{R}^{3}$=$\frac{4}{3}π×27$=36π.

点评 本题考查线面垂直的证明,考查三棱锥的外接的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如图频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布N(200,12.22),试计算数据落在(187.8,212.2)上的频率;
参考数据
若Z~N(μ,δ2),则P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.
(Ⅲ)设生产成本为y,质量指标为x,生产成本与质量指标之间满足函数关系y=$\left\{\begin{array}{l}{0.4x,x≤205}\\{0.8x-80,x>205}\end{array}\right.$,假设同组中的每个数据用该组区间的右端点值代替,试计算生产该食品的平均成本.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某班主任为了对本班学生的数学和物理成绩进行分析,随机抽取了8位学生的数学和物理成绩如下表.
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
(Ⅰ)通过对样本数据进行初步处理发现,物理成绩y与数学成绩x之间具有线性相关性,求y与x的线性回归方程(系数精确到0.01).
(Ⅱ)当某学生的数学成绩为100分时,估计该生的物理成绩.(精确到0.1分)
参考公式:回归直线的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y)}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
参考数据:$\sum_{i=1}^{8}({x}_{1}-\overline{x})^{2}$=1050,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈457,$\sum_{i=1}^{8}({x}_{1}-\overline{x})({y}_{1}-\overline{y})$≈688,$\sqrt{1050}$≈32.4.$\sqrt{457}$≈21.4,$\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.我国古代数学专著《孙子算法》中有“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”如果此物数量在100至200之间,那么这个数128.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}满足an+1-an=2,a1=-5,则|a1|+|a2|+…+|a6|=(  )
A.9B.15C.18D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚疼减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起脚疼每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了?”根据此规律,求后3天一共走多少里(  )
A.156里B.84里C.66里D.42里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知四边形ABEF于ABCD分别为正方形和直角梯形,平面ABEF⊥平面ABCD,AB=BC=$\frac{1}{2}$AD=1,AB⊥AD,BC∥AD,点M是棱ED的中点.
(1)求证:CM∥平面ABEF;
(2)求三棱锥D-ACF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.随着生活水平和消费观念的转变,“三品一标”(无公害农产品、绿色食品、有机食品和农产品地理标志)已成为不少人的选择,为此某品牌植物油企业成立了有机食品快速检测室,假设该品牌植物油每瓶含有机物A的概率为p(0<p<1),需要通过抽取少量油样化验来确定该瓶油中是否含有有机物A,若化验结果呈阳性则含A,呈阴性则不含A.若多瓶该种植物油检验时,可逐个抽样化验,也可将若干瓶植物油的油样混在一起化验,仅当至少有一瓶油含有有机物A时混合油样呈阳性,若混合油样呈阳性,则该组植物油必须每瓶重新抽取油样并全部逐个化验.
(1)若$p=\frac{1}{3}$,试求3瓶该植物油混合油样呈阳性的概率;
(2)现有4瓶该种植物油需要化验,有以下两种方案:
方案一:均分成两组化验;方案二:混在一起化验;请问哪种方案更适合(即化验次数的期望值更小),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.从1,2,3,4,5,6,7这七个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是$\frac{19}{35}$.

查看答案和解析>>

同步练习册答案