精英家教网 > 高中数学 > 题目详情
20.据统计,截至2016年底全国微信注册用户数量已经突破9.27亿,为调查大学生这个微信用户群体中每人拥有微信群的数量,现从某市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量(个)频数频率
0~40.15
5~8400.4
9~1225
13~16ac
16以上5b
合计1001
(Ⅰ)求a,b,c的值及样本中微信群个数超过12的概率;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过12的概率;
(Ⅲ)以(1)中的频率作为概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过12的人数,求X的分布列和数学期望E(X).

分析 (Ⅰ)在0至4这一段,对应的频数为15,由此能求出a,b,c的值及样本中微信群个数超过12的概率.
(Ⅱ)记“2人中恰有1人微信群个数超过12”为事件A,利用等可能事件概率计算公式能求出2人中恰有1人微信群个数超过12的概率.
(Ⅲ)由题意知微信群个数超过12的概率为P=$\frac{1}{5}$,X的所有可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和E(X).

解答 解:(Ⅰ)在0至4这一段,对应的频数为15,
由已知得:15+40+25+a+5=100,
解得a=15,
∴b=$\frac{5}{100}$=0.05,c=$\frac{15}{100}=0.15$,c=$\frac{15}{100}$=0.15,
样本中微信群个数超过12的概率p=$\frac{20}{100}=\frac{1}{5}$.
(Ⅱ)记“2人中恰有1人微信群个数超过12”为事件A,
则P(A)=$\frac{{C}_{20}^{1}{C}_{40}^{1}}{{C}_{200}^{2}}$=$\frac{32}{99}$,
∴2人中恰有1人微信群个数超过12的概率为$\frac{32}{99}$.
(Ⅲ)由题意知微信群个数超过12的概率为P=$\frac{1}{5}$,
X的所有可能取值为0,1,2,3,
则P(X=0)=${C}_{3}^{0}(1-\frac{1}{5})^{3}$=$\frac{64}{125}$,
P(X=1)=${C}_{3}^{1}(\frac{1}{5})(1-\frac{1}{5})^{2}$=$\frac{48}{125}$,
P(X=2)=${C}_{3}^{2}(\frac{1}{5})^{2}(1-\frac{1}{5})$=$\frac{12}{125}$,
P(X=3)=${C}_{3}^{3}(\frac{1}{5})^{3}$=$\frac{1}{125}$,
∴X的分布列为:

 X 0 1 3
 P $\frac{64}{125}$ $\frac{48}{125}$ $\frac{12}{125}$ $\frac{1}{125}$
E(X)=$0×\frac{64}{125}+1×\frac{48}{125}+2×\frac{12}{125}+3×\frac{1}{125}$=$\frac{3}{5}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,考查推理论证能力、运算求解能力、空间思维能力,考查数形结合思想、转化化归思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点A(0,3),与双曲线$\frac{{x}^{2}}{14}-\frac{{y}^{2}}{13}$=1有相同的焦点
(1)求椭圆C的方程;
(2)过A点作两条相互垂直的直线,分别交椭圆C于P,Q两点,则PQ是否过定点?若是,求出定点的坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.我国古代数学专著《孙子算法》中有“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”如果此物数量在100至200之间,那么这个数128.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚疼减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起脚疼每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了?”根据此规律,求后3天一共走多少里(  )
A.156里B.84里C.66里D.42里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知四边形ABEF于ABCD分别为正方形和直角梯形,平面ABEF⊥平面ABCD,AB=BC=$\frac{1}{2}$AD=1,AB⊥AD,BC∥AD,点M是棱ED的中点.
(1)求证:CM∥平面ABEF;
(2)求三棱锥D-ACF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数$f(x)=\left\{{\begin{array}{l}{1,x有理数}\\{0,x为无理数}\end{array}}\right.$,则关于函数f(x)有以下四个命题(  )
①?x∈R,f(f(x))=1;
②?x0,y0∈R,f(x0+y0)=f(x0)+f(y0);
③函数f(x)是偶函数;
④函数f(x)是周期函数.
其中真命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.随着生活水平和消费观念的转变,“三品一标”(无公害农产品、绿色食品、有机食品和农产品地理标志)已成为不少人的选择,为此某品牌植物油企业成立了有机食品快速检测室,假设该品牌植物油每瓶含有机物A的概率为p(0<p<1),需要通过抽取少量油样化验来确定该瓶油中是否含有有机物A,若化验结果呈阳性则含A,呈阴性则不含A.若多瓶该种植物油检验时,可逐个抽样化验,也可将若干瓶植物油的油样混在一起化验,仅当至少有一瓶油含有有机物A时混合油样呈阳性,若混合油样呈阳性,则该组植物油必须每瓶重新抽取油样并全部逐个化验.
(1)若$p=\frac{1}{3}$,试求3瓶该植物油混合油样呈阳性的概率;
(2)现有4瓶该种植物油需要化验,有以下两种方案:
方案一:均分成两组化验;方案二:混在一起化验;请问哪种方案更适合(即化验次数的期望值更小),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(x-2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的单调递增函数,求实数a的取值范围;
(2)当$a∈(0,\frac{1}{4})$时,求证:函数f(x)有最小值,并求函数f(x)最小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=lnx,曲线y=g(x)与曲线y=f(x)关于直线y=x对称,若存在一条过原点的直线与曲线y=f(x)和曲线y=g(ax)都相切,则实数a的值为$\frac{1}{e^2}$.

查看答案和解析>>

同步练习册答案