精英家教网 > 高中数学 > 题目详情
9.等差数列0,2,4,6,8,10,…按如下方法分组:(0),(2,4),(6,8,10),(12,14,16,18),…则第n组中n个数的和是(  )
A.$\frac{n(2{n}^{2}-n-1)}{2}$B.n(n2-1)C.n3-1D.$\frac{n({n}^{2}-1)}{2}$

分析 由已知求出前n-1组含有非负偶数个数,进一步求出第n组的第一个数,再由等差数列的前n项和得答案.

解答 解:由已知可得,前n-1组含有非负偶数个数为1+2+3+…+(n-1)=$\frac{(1+n-1)(n-1)}{2}=\frac{n(n-1)}{2}$(n≥2),
则第n组的第一个数为:$2×(\frac{{n}^{2}-n}{2}-1)+2={n}^{2}-n$,
∴第n组中n个数的和是$n({n}^{2}-n)+\frac{n(n-1)}{2}×2=n({n}^{2}-1)$.
故选:B.

点评 本题考查等差数列的通项公式,考查了等差数列的前n项和,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.甲、乙、丙、丁和戊5 名学生进行劳动技术比赛,决出第一名到第5 名的名次.若甲乙都没有得到冠军,并且乙不是最差的,5 个人的名次排名可能有多少种不同的情况?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若z∈C,且i•z=1-i,则复数z=-1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法
①角α是第一象限的角,则角2α是第一或第二象限的角;
②变量“正方体的棱长”和变量“正方体的体积”属于相关关系;
③掷一粒均匀的骰子,出现“向上的点数为偶数”的概率为$\frac{1}{2}$;
④向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则存在实数λ,使得$\overrightarrow{a}$=λ$\overrightarrow{b}$,
其中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数f(x)=3x3-3x+1的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={x|0≤x<4},B={x∈N|1≤x≤3},则A∩B=(  )
A.{x|1≤x≤3}B.{x|0≤x<4}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数g(x)=x3+3ax-2.
(1)当a为何值时,x轴为曲线y=g(x)的切线;
(2)求a的范围,使g(x)有极值,并求极大值与极小值的和;
(3)设f(x)=[$\frac{1}{3}$g′(x)-ax]ex-x2,若函数f(x)在x=0处取得极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的可到函数f(x)满足:对任意x∈R有f(x)+f(-x)=$\frac{{x}^{2}}{2}$,且在区间[0,+∞)上有2f′(x)>x,若f(a)-f(2-a)≥a-1,则实数a的取值范围为a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=2kax+(k-3)a-x(a>0且a≠1)是定义域为R的奇函数.
(Ⅰ)求k的值;
(Ⅱ)若f(2)<0,试判断函数f(x)的单调性,并求使不等式f(x2-x)+f(tx+4)<0恒成立的t的取值范围.

查看答案和解析>>

同步练习册答案