精英家教网 > 高中数学 > 题目详情
如图,在边长为2的正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点,试用向量的方法:
(1)求证:D1F⊥平面ADE;
(2)求CB1与平面ADE所成的角的余弦值.
考点:直线与平面垂直的判定,直线与平面所成的角
专题:空间位置关系与距离,空间角
分析:(1)首先建立空间直角坐标系,利用向量的数量积来解决线面垂直
(2)通过引入法向量,来求线面的夹角.
解答: 解:(1)以点D为坐标原点,分别以DA,DC,DD1所在的直线为x轴,y轴,z轴建立空间直角坐标系.
由于正方体的边长为2,则:
D1F
=(0,1,-2),
DA
=(2,0,0),
DE
=(2,2,1)
由于
D1F
DA
=0
D1F
DE
=0

所以:D1F⊥DA,D1F⊥DE
又DA∩DE=D
D1F⊥平面ADE
(2)
CB1
=(2,0,2)

由(1)知平面ADE的法向量
n
=
D1F
=(0,1,-2)

cos<
CB1
n
>=
-4
8
5
=-
10
5

设CB1与平面ADE所成的角为θ,
所以:sinθ=
10
5
cosθ=
15
5

∴CB1与平面ADE所成的角的余弦值为
15
5
点评:本题考查的知识要点:空间直角坐标系,向量的垂直问题,线面垂直的判定定理,法向量的应用,线面的夹角公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)过点(1,2)且与直线x+2y-1=0平行的直线的方程是
 

(2)过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
2
lnx-
1
2
x,g(x)=2cos2x+sinx+a.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对于任意x1∈[
1
e
,e],总存在x2∈[0,
π
2
],使得f(x1)≤g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个棱长为2的正方体的顶点都在球面上,则这个球的表面积是
 
cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=x3-2x2+mx,当x=
1
3
时,函数取得极大值,则m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-ex+a
ex+1
是奇函数.
(1)求a的值,并判断f(x)在R上的单调性(不需证明);
(2)若对任意的t∈[-1,2],不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义集合A、B的一种运算:A*B={x|x=x1•x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},则集合A*B的真子集个数为(  )
A、15B、16C、31D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在半径为3的圆O中,直径AB与弦CD垂直,垂足为E(E在A、O之间).若CE=
5
,则AE=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且E,F,G,H分别是线段PA、PD、CD、BC的中点.
(1)求证:BC∥平面EFG;
(2)DH⊥平面AEG.

查看答案和解析>>

同步练习册答案