精英家教网 > 高中数学 > 题目详情
7、F1,F2是双曲线的两个焦点,Q是双曲线上任一点,从焦点F1引∠F1QF2的平分线的垂线,垂足为P,则点P的轨迹为.
分析:利用已知条件判断出△AQF1为等腰三角形,利用双曲线的定义及等量代换得到AF2=2a,利用三角形的中位线得到OP=a
利用圆的定义判断出点的轨迹.
解答:解:设O为F1F2的中点
延长F1P交QF2于A,连接OP
据题意知△AQF1为等腰三角形
所以QF1=QA
∵|QF1-QF2|=2a
∴∵|QA-QF2|=2a
即AF2=2a
∵OP为△F1F2A的中位线
∴OP=a
故点P的轨迹为以O为圆心,以a为半径的圆
故选B
点评:本题考查双曲线的定义、原点定义及等量代换的数学方法、三角形的中位线性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1  (a>0,b>0)
经过点A(
3
5
5
4
5
5
)
,其渐近线方程为y=±2x.
(1)求双曲线的方程;
(2)设F1,F2是双曲线的两个焦点,证明:AF1⊥AF2

查看答案和解析>>

科目:高中数学 来源: 题型:

F1、F2是双曲线的两个焦点,双曲线上存在点P,满足∠F1PF2=60°,且|PF1|=2|PF2|,则该双曲线的离心率为(  )
A、
2
B、
3
C、2
2
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是双曲线
x2
64
-
y2
36
=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为
33
33

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)过点A(
2
,0)
,且离心率为
2
,设F1、F2是双曲线的两个焦点,点P为双曲线上一点
(1)求双曲线的方程;
(2)若△PF1F2是直角三角形,求点P的坐标.

查看答案和解析>>

同步练习册答案