精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1  (a>0,b>0)
经过点A(
3
5
5
4
5
5
)
,其渐近线方程为y=±2x.
(1)求双曲线的方程;
(2)设F1,F2是双曲线的两个焦点,证明:AF1⊥AF2
分析:(1)根据题意,双曲线C的一条渐近线方程为 y=±2x,将点C坐标代入方程,列出关于a,b的方程,解出a,b,进而可得答案.
(2)由(1)得,F1(-
5
,0)
F2(
5
,0)
,从而以F1F2为直径的圆的方程,再根据点A(
3
5
5
4
5
5
)
的坐标满足方程x2+y2=5,得出点A在以F1F2为直径的圆上,最终得出AF1⊥AF2
解答:(1)解:依题意
b
a
=2
9
5a2
-
16
5b2
=1
…(3分)      
解得 
a=1
b=2.
…(5分)
所以双曲线的方程为x2-
y2
4
=1
.…(6分)
(2)由(1)得,F1(-
5
,0)
F2(
5
,0)

从而以F1F2为直径的圆的方程是x2+y2=5.…(9分)
因为点A(
3
5
5
4
5
5
)
的坐标满足方程x2+y2=5,
故点A在以F1F2为直径的圆上,所以AF1⊥AF2.…(12分)
点评:本题考查双曲线的方程、双曲线的简单性质,涉及双曲线的方程与其渐近线的方程之间的关系,要求学生熟练掌握,注意题意要求是标准方程,答案必须写成标准方程的形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案