精英家教网 > 高中数学 > 题目详情

【题目】2016年1月6日北京时间上午11时30分,朝鲜中央电视台宣布“成功进行了氢弹试验”,再次震动世界,此事件也引起了我国公民热议,其中丹东市(丹东市和朝鲜隔江)某聊天群有300名网友,乌鲁木齐市某微信群有200名网友,为了解不同地区我国公民对“氢弹试验”事件的关注程度,现采用分层抽样的方法,从中抽取了100名网友,先分别统计了他们在某时段发表的信息条数,再将两地网友发表的信息条数分成5组:,分别加以统计,得到如图所示的频率分布直方图.

(1)求丹东市网友的平均留言条数(保留整数);

(2)为了进一步开展调查,从样本中留言条数不足50条的网友中随机抽取2人,求至少抽到一名乌鲁木齐市网友的概率;

(3)规定“留言条数”不少于70条为“强烈关注”.

①请你根据已知条件完成下列的列联表:

强烈关注

非强烈关注

合计

丹东市

乌鲁木齐市

合计

②判断是否有的把握认为“强烈关注”与网友所在的地区有关?

附:临界值表及参考公式:

,其中

【答案】(1)64;(2);(3)列联表见解析;没有.

【解析】

(1)根据频率分布直方图的平均数的计算公式得到结果;(2)根据频率分布直方图得到丹东市满足条件的人数6人,乌鲁木齐2人,随机抽取2人有28种方法,符合题目条件的有13人,根据古典概型的计算公式得到结果;(3)①根据频率分布直方图得到相应的列联表;②由公式得到卡方值,进而得到判断.

(1)45×0.01×10+55×0.025×10+65×0.04×10+75×0.02×10+85×0.005×10=63.5≈64.

所以丹东市网友的平均留言条数是64条.

(2)留言条数不足50条的网友中,丹东市网友有0.01×10×100× =6(人),乌鲁木齐市网友有0.005×10×100×=2(人),

从中随机抽取2人共有种可能结果,其中至少有一名乌鲁木齐市网友的结果共有CC+ C=12+1=13种情况,

所以至少抽到一名乌鲁木齐市网友的概率为 P

(3)①列联表如下:

强烈关注

非强烈关注

合计

丹东市

15

45

60

乌鲁木齐市

15

25

40

合计

30

70

100

K2的观测值k≈1.79.

因为1.79<2.706,所以没有90%的把握认为“强烈关注”与网友所在的地区有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8

I)在答题卡上作出这些数据的频率分布直方图:

II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);

III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合质量指标值不低于95的产品至少要占全部产品的80%的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有2个红球,1个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取2个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:

①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;

②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;

③若取得的2个小球都是红球,则该顾客中得一等奖,奖金是一个10元的红包;

④若取得的2个小球都不是红球,则该顾客中得二等奖,奖金是一个5元的红包;

⑤若取得的2个小球只有1个红球,则该顾客中得三等奖,奖金是一个2元的红包.

抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.

(1)求这20位顾客中获得抽奖机会的人数与抽奖总次数(假定每位获得抽奖机会的顾客都会去抽奖);

(2)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);

(3)分别求在一次抽奖中获得红包奖金10元,5元,2元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,抛物线 与抛物线 异于原点的交点为,且抛物线在点处的切线与轴交于点,抛物线在点处的切线与轴交于点,与轴交于点.

(1)若直线与抛物线交于点 ,且,求抛物线的方程;

(2)证明: 的面积与四边形的面积之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在,使成立,则称的不动点.已知函数 .

1)当时,求函数的不动点;

2)若对任意实数,函数恒有两个相异的不动点,求的取值范围;

3)在(2)的条件下,若的两个不动点为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).

(1)若直线l过抛物线C的焦点,求抛物线C的方程;

(2)当p=1时,若抛物线C上存在关于直线l对称的相异两点P和Q.求线段PQ的中点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直线为轴,三角形面旋转一周形成一旋转体,求此旋转体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

某初级中学共有学生2000名,各年级男、女生人数如下表:


初一年级

初二年级

初三年级

女生

373

x

y

男生

377

370

z

已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.

x的值;

现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?

已知y245,z245,求初三年级中女生比男生多的概率.

查看答案和解析>>

同步练习册答案