精英家教网 > 高中数学 > 题目详情

(08年北师大附中月考文)设函数f (x ) = ax3 + bx2 + cx + 3-aabc∈R,且a≠0),当x =-1时,f (x )取得极大值2.

(I)用关于a的代数式分别表示bc

(II)当a = 1时,求f (x )的极小值;

(III)求a的取值范围.

解析:(I)= 3ax2 + 2bx + c

,得:b = a + 1,c = 2-a

(II)当a = 1时,f (x ) = x3 + 2x2 + x + 2,

此时,= 3x2 + 4x + 1 = (x + 1)(3x + 1),

>0,得x<-1或x>-<0,得-1<x<-

故极小值为f (-) =

(III)由于f (x )在x =-1处有极大值,且a≠0,

x =-1是= 0的实数根,且方程有两个不等实数根,

∴ 另一个根为

x =-1处f (x )取得极大值,

,解得:a.

a的取值范围(,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年北师大附中月考文)已知数列{an}的前n项和为Sn,且满足a1 = 2,nan +1 = Sn + n (n + 1).

(I)求数列{an}的通项公式an

(II)设Tn为数列{}的前n项和,求Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年北师大附中月考文) 已知锐角△ABC中,角A、B、C的对边分别为abc,且tanB =

(1)求角B;

(2)求函数f (x ) = sinx + 2sinBcosxx∈[0,])的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年北师大附中月考) 设函数f (x ) = tx2 + 2tx + t2-1(xRt>0).

(I)求f (x )的最小值h (t );

(II)若h (t )<-2t + mt∈(0,2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年北师大附中月考) 已知各项都不相等的等差数列{an}的前6项和为60,且a6a1a21的等比数列.

(I)求数列{an}的通项公式an及前n项和Sn

(II)若数列{bn}满足bn +1bn = ann∈N*),且b1 = 3,求数列{}的前n项和Tn.

查看答案和解析>>

同步练习册答案