精英家教网 > 高中数学 > 题目详情
14.函数f(x)=x3+x+1(x∈R),若f(a)=2,则f(-a)=0.

分析 利用函数的奇偶性,转化求解函数值即可.

解答 解:函数f(x)=x3+x+1(x∈R),若f(a)=2,则f(-a)=-a3-a+1=-(a3+a+1)+2=-f(a)+2
=-2+2=0
故答案为:0.

点评 本题考查函数的奇偶性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=4cos?x•sin(?x+$\frac{π}{4}}$)(?>0)的最小正周期为π.
(1)求?的值;
(2)讨论f(x)在区间[0,$\frac{π}{2}}$]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.集合A={1,2},B={x∈Z|1<x<4},则A∪B=(  )
A.{1,2,3,4}B.{1,2,3}C.{2,3}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若点P的坐标是(5cosθ,4sinθ),圆C的方程为x2+y2=25,则点P与圆C的位置关系是(  )
A.点P在圆C内B.点P在圆C上
C.点P在圆C内或圆C上D.点P在圆C上或圆C外

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集为R,集合A={x|-3<x<3},B={x|-1<x≤5},则A∩(∁UB)=(  )
A.(-3,-1]B.(-3,-1)C.(-3,0)D.(-3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在R上的函数f(x)=2|x|-1,记a=f(log0.53),b=f(log25),$c=f(lo{g_2}\frac{1}{4})$,则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知各项均为正数的等差数列{an}的公差为d,其前n项和为sn,a1=2且a1,a2,a3+2成等比数列.
(1)求公差d和an; 
(2)令bn=$\frac{1}{s_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.用二分法求函数f(x)=lgx+2x-3的一个零点,其参考数据如表:
f(1)=-1f(1.25)=-0.4031f(1.375)=-0.1117
f(1.4375)=0.0326f(1.5)=0.1761f(2)=1.3010
若精确到0.1,则方程lgx+2x-3=0的一个近似解x≈1.4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=\left\{\begin{array}{l}|{{{log}_2}x}|,0<x<2\\ sin({\frac{π}{4}x}),2≤x≤10\end{array}\right.$,若存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则$\frac{{({{x_3}-1})({{x_4}-1})}}{{{x_1}{x_2}}}$的取值范围是(9,21).

查看答案和解析>>

同步练习册答案