精英家教网 > 高中数学 > 题目详情
(2013•普陀区二模)若(2x+1)11=a0+a1x+a2x2+…+a11x11,则(a0+a2+…+a10)2-(a1+a3+…+a11)2=
-311
-311
分析:在所给的等式中,令x=1可得a0+a1+a2+a3+…+a11=311,再令x=-1可得(a0+a2+a4+…+a10
-(a1+a3+a5+…+a11)=-1,相乘,即得所求.
解答:解:∵(2x+1)11=a0+a1x+a2x2+…+a11x11,令x=1可得a0+a1+a2+a3+…+a11=311
再令x=-1可得(a0+a2+a4+…+a10)-(a1+a3+a5+…+a11)=-1.
两式相乘可得 (a0+a2+…+a10)2-(a1+a3+…+a11)2=-311
故答案为-311
点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,给x赋值求出某些项的系数,
是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)函数y=
log2(x-1)
的定义域为
[2,+∞)
[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知双曲线C:
x2
a2
-
y2
b2
=1
的焦距为10,点P(2,1)在C的渐近线上,则C的方程为
x2
20
-
y2
5
=1
x2
20
-
y2
5
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)若函数f(x)=x2+ax+1是偶函数,则函数y=
f(x)|x|
的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知函数f(x)=Acos(ωx+?)(A>0,ω>0,-
π
2
<?<0
)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2)
(1)求函数f(x)的解析式;
(2)若锐角θ满足cosθ=
1
3
,求f(2θ)的值.

查看答案和解析>>

同步练习册答案