精英家教网 > 高中数学 > 题目详情

某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门。该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同。
(1)求恰有2门选修课这3个学生都没有选择的概率;
(2)设随机变量为甲、乙、丙这三个学生选修数学史这门课的人数,求的分布列及期望,方差.

(1);(2)详见解析.

解析试题分析:(1)本题的总的基本事件的个数,满足条件的事件数是,代入公式得到结果.
(2)某一选择修课这3个学生选择的人数为0,1,2,3,属于二项分布,,
类似于前面所说,求出各种不同情况下对应的概率,写出分布列,算出期望.
(1)恰有2门选修课这3个学生都没有选择的概率:
=
(Ⅲ)设数学史这门课这3个学生选择的人数为,则=0,1,2,3 
P (=" 0" ) =  P (=" 1)" =
P (=" 2" ) =  P (=" 3" ) =
的分布列为:


0
1
2
3
P




 
∴期望E=np=,
考点:1.古典概型的概率;2.二项分布的期望,方差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为.
(Ⅰ)求“抽取的卡片上的数字满足”的概率;
(Ⅱ)求“抽取的卡片上的数字不完全相同”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下表是某市从3月份中随机抽取的天空气质量指数()和“”(直径小于等于微米的颗粒物)小时平均浓度的数据,空气质量指数()小于表示空气质量优良.

日期编号










空气质量指数(










小时平均浓度(










 
(1)根据上表数据,估计该市当月某日空气质量优良的概率;
(2)在上表数据中,在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件为“抽取的两个日期中,当天‘’的小时平均浓度不超过”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

做抛掷两颗骰子的试验:用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第二颗骰子出现的点数,(1)写出试验的基本事件;(2)求事件“出现点数之和大于8”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•天津)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4; 白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).
(1)求取出的4张卡片中,含有编号为3的卡片的概率.
(2)再取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,设O为坐标原点,点P的坐标为.
(1)求随机变量 的最大值,并求事件“取得最大值”的概率;
(2)求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商店试销某种商品20天,获得如下数据:

日销售量(件)
0
1
2
3
频数
1
5
9
5
 
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。
(1)求当天商品不进货的概率;
(2)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)从区间内任取一个实数,设事件={函数在区间上有两个不同的零点},求事件发生的概率;
(2)若连续掷两次骰子(骰子六个面上标注的点数分别为)得到的点数分别为,记事件{恒成立},求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一盒中有9个正品和3个次品零件,每次取一个零件,如果取出的是次品不再放回,求在取得正品前已取出的次品数X的概率分布,并求P.

查看答案和解析>>

同步练习册答案