精英家教网 > 高中数学 > 题目详情

f(x)为奇函数,x>0时,f(x)=sin2x+cosx,则x<0时f(x)=________.

sin2x-cosx
分析:设x<0,则-x>0,适合x>0时的解析式,求得f(-x)再由f(x)为奇函数,求得f(x).
解答:设x<0,则-x>0,
又因为x>0时,f(x)=sin2x+cosx
的以f(-x)=cosx-sin2x
又因为f(x)为奇函数,
所以f(x)=-f(-x)=sin2x-cosx
故答案为:sin2x-cosx
点评:本题主要利用奇偶性来求对称区间上的解析式,注意求哪个区间上的解析式,要在哪个区间上取变量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a是实数,f(x)=a-
22x+1
(x∈R)

(1)若函数f(x)为奇函数,求a的值;
(2)试证明:对于任意a,f(x)在R上为单调函数;
(3)若函数f(x)为奇函数,且不等式f(k•3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2f(x)+f(
1
x
)=-
3
x
(x≠0),则下列说法正确的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•兰州模拟)已知函数y=f(x)为奇函数,当x>0时,f(x)=x2-2x-3,则不等式f(x)>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其单调性(无需证明).
(2)求使f(x)<0的x取值范围.
(3)设h-1(x)是h(x)=log2x的反函数,若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为奇函数,x>0时为增函数且f(2)=0,则{x|f(x-2)>0}=(  )
A、{x|0<x<2或x>4}B、{x|x<0或x>4}C、{x|x<0或x>6}D、{x|x<-2或x>2}

查看答案和解析>>

同步练习册答案