精英家教网 > 高中数学 > 题目详情
已知椭圆C:=1(a>b>0)的短轴长为4,F1F2分别是椭圆C的左,右焦点,直线y=x与椭圆C在第一象限内的交点为A,△AF1F2的面积为2,点P(x,y),是椭圆C上的动点w.
(1)求椭圆C的方程;
(2)若∠F1PF2为钝角,求点P的横坐标x的取值范围;
(3)求PF1+PA的最小值.

【答案】分析:(1)由题意得b=2,①,设A(x,x)(x>0),则,②结合△AF1F2的面积为2,有cx=2③,由①②③得a,最后写出椭圆C的方程;
(2)设p(x,y),根据椭圆方程求得两焦点坐标,根据∠F1PF2是钝角推断出PF21+PF22<F1F22代入p坐标求得x和y的不等式关系,求得x的范围.
(3)过点P向椭圆右准线做垂线,垂足为B,根据椭圆方程求得离心率和准线方程,进而根据椭圆的第二定义,进而可判定当P,A,B三点共线时有最小值,从而求得答案.
解答:解:(1)∵2b=4,∴b=2,①
由题意,设A(x,x)(x>0),则,②
△AF1F2的面积为2,∴cx=2③,
由①②③得:a=2,椭圆C的方程为:
(2)设p(x,y),则 F1(-2,0),F2(2,0),
且∠F1PF2是钝角
?PF12+PF22<F1F22?(x+22+y2+(x-22+y2<32
?x2+y2<8
(3)椭圆 与y=x(x>0)解得A(),
自P作椭圆左准线的垂线,垂足为H,∵
左准线方程:x=-3
PF1+PA即为:(PH+PA)
当A,P,H三点共线时,其和最小,
|PA|+|PB|的最小值为|AB|,
因点A到左准线的距离为:+3
PF1+PA的最小值+3)=6+
点评:本题主要考查了椭圆的简单性质和解不等式,∠F1PF2是钝角推断出PF21+PF22<F1F22,是解题关键,本题还考查学生的作图能力和应用椭圆的第一定义和第二定义来求最值的能力.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2013年四川省资阳市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0)经过(1,1)与()两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:++为定值.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷9(理科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学总复习备考综合模拟试卷(3)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

同步练习册答案