精英家教网 > 高中数学 > 题目详情
2.如图,四棱锥P-ABCD中,AB∥CD,AB=2CD,E为PB的中点.
(1)求证:CE∥平面PAD.
(2)在线段AB上是否存在一点F,使得平面PAD∥平面CEF?若存在,证明你的结论,若不存在请说明理由.

分析 (1)取PA的中点H,连接EH,DH,证明四边形DCEH是平行四边形,即可证明CE∥平面PAD.
(2)取AB的中点F,连接CF,EF,证明四边形AFCD为平行四边形,可得CF∥AD.又CF?平面PAD,所以CF∥平面PAD,结合(1),即可证明平面PAD∥平面CEF.

解答 (1)证明:如图所示,取PA的中点H,连接EH,DH.
因为E为PB的中点,
所以EH∥AB,EH=$\frac{1}{2}$AB.
又AB∥CD,CD=$\frac{1}{2}$AB,
所以EH∥CD,EH=CD.
因此四边形DCEH是平行四边形,
所以CE∥DH.
又DH?平面PAD,CE?平面PAD,
因此CE∥平面PAD.
(2)解:如图所示,取AB的中点F,连接CF,EF,
所以AF=$\frac{1}{2}$AB.
又CD=$\frac{1}{2}$AB,所以AF=CD.
又AF∥CD,所以四边形AFCD为平行四边形,
因此CF∥AD.
又CF?平面PAD,所以CF∥平面PAD.
由(1)可知CE∥平面PAD.
因为CE∩EF=E,故平面CEF∥平面PAD.

点评 此题考查直线与平面平行的判断及平面与平面平行的判断,考查学生分析解决问题的能力,正确证明直线与平面平行是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.为了解某校学生喜爱打篮球是否与性别有关,采用随机抽样方法抽取了50名学生进行问卷调查,得到如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在这50名学生中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(Ⅲ)记不喜爱打篮球的5名男生分别为A、B、C、D、E,这5名男生喜爱打乒乓球,
如果从他们当中任选2人作为一对组合参加乒乓球男子双打比赛,求A、B中恰好有1人被选中的概率.
下面的临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a,b∈R,且$\left\{\begin{array}{l}{(a-1)^3}+2015(a-1)=-2016\\{(b-2)^3}+2015(b-2)=2016\end{array}\right.$,则a+b的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα+3cosα=2,求$\frac{sinα-cosα}{sinα+cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为4,棱柱的体积为16,棱柱的各顶点在一个球面上,则这个球的表面积是(  )
A.16πB.20πC.24πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x+y=1,x4+y4的最小值是$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某公司研制出了一种新产品,其生产这种产品每年需要固定投资80万元,此外每生产1件该产品还需要增加投资2万元,年产量为x(x∈N*)件.当年产量不超过20件时,年销售量总收入为(30x-x2)万元;当年产量超过20件时,年销售总输入为210万元.
(1)记该公司生产并销售这种产品所得的年利润为f(x)万元,将f(x)表示为年产量x的函数;
(2)当年产量为多少件时,所得年利润最大?并求出最大年利润.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若sinθcosθ<0,则角θ的终边在第二或四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数z=$\frac{1}{2+i}$-i2015(i为虚数单位),则$\overline{z}$的虚部为(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{4}{5}$iD.-$\frac{4}{5}$i

查看答案和解析>>

同步练习册答案