【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.曲线C的参数方程为
(为参数,且0≤<2π),曲线l的极坐标方程为ρ=
(k是常数,且k∈R).
(1)求曲线C的普通方程和曲线l直角坐标方程;
(2)若曲线l被曲线C截的弦是以(
,1)为中点,求k的值.
【答案】
(1)解:由
,得
,
则(x﹣2)2+y2=(2cos)2+(2sin)2,
即曲线C的普通方程为(x﹣2)2+y2=4.
曲线l的极坐标方程为ρ=
(k是常数).
由互换公式,ρcosθ=x,ρsinθ=y,得2y﹣2kx=2﹣3k,
即曲线l的直角坐标方程为
.
(2)解:由(1)知,曲线C是圆,曲线l是直线,且以
为弦的中点,
则
,则 ![]()
【解析】(1)由
,得
,利用三角函数基本关系式可得曲线C的普通方程.曲线l的极坐标方程为ρ=
(k是常数),由互换公式,ρcosθ=x,ρsinθ=y,代入即可得出曲线l的直角坐标方程.(2)由(1)知,曲线C是圆,曲线l是直线,且以
为弦的中点,利用垂经定理、相互垂直的直线斜率之间的关系即可得出.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|+m|x+a|.
(1)当m=a=﹣1时,求不等式f(x)≥x的解集;
(2)不等式f(x)≥2(0<m<1)恒成立时,实数a的取值范围是{a|a≤﹣3或a≥3},求实数m的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(1)判断函数的奇偶性,并加以证明;
(2)用定义证明
在
上是减函数;
(3)函数
在
上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市准备引进优秀企业进行城市建设. 城市的甲地、乙地分别对5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.
![]()
(Ⅰ)根据茎叶图,求乙地对企业评估得分的平均值和方差;
(Ⅱ)规定得分在85分以上为优秀企业. 若从甲、乙两地准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.
注:方差![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设S是实数集R的非空子集,若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题:①集合S={a+b
|a,b为整数}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足STR的任意集合T也是封闭集.其中真命题是________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列三个等式:f(x+y)=f(x)f(y),f(xy)=f(x)+f(y),f(ax+by)=af(x)+bf(y)(a+b=1).下列选项中,不满足其中任何一个等式的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上.
![]()
(Ⅰ)求异面直线D1E与A1D所成的角;
(Ⅱ)若平面D1EC与平面ECD的夹角大小为45°,求点B到平面D1EC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个顶点为
,半焦距为
,离心率
,又直线
交椭圆于
,
两点,且
为
中点.
(1)求椭圆
的标准方程;
(2)若
,求弦
的长;
(3)若点
恰好平分弦
,求实数
;
(4)若满足
,求实数
的取值范围并求
的值;
(5)设圆
与椭圆
相交于点
与点
,求
的最小值,并求此时圆
的方程;
(6)若直线
是圆
的切线,证明
的大小为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com