精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.曲线C的参数方程为 为参数,且0≤<2π),曲线l的极坐标方程为ρ= (k是常数,且k∈R).
(1)求曲线C的普通方程和曲线l直角坐标方程;
(2)若曲线l被曲线C截的弦是以( ,1)为中点,求k的值.

【答案】
(1)解:由 ,得

则(x﹣2)2+y2=(2cos2+(2sin2

即曲线C的普通方程为(x﹣2)2+y2=4.

曲线l的极坐标方程为ρ= (k是常数).

由互换公式,ρcosθ=x,ρsinθ=y,得2y﹣2kx=2﹣3k,

即曲线l的直角坐标方程为


(2)解:由(1)知,曲线C是圆,曲线l是直线,且以 为弦的中点,

,则


【解析】(1)由 ,得 ,利用三角函数基本关系式可得曲线C的普通方程.曲线l的极坐标方程为ρ= (k是常数),由互换公式,ρcosθ=x,ρsinθ=y,代入即可得出曲线l的直角坐标方程.(2)由(1)知,曲线C是圆,曲线l是直线,且以 为弦的中点,利用垂经定理、相互垂直的直线斜率之间的关系即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+m|x+a|.
(1)当m=a=﹣1时,求不等式f(x)≥x的解集;
(2)不等式f(x)≥2(0<m<1)恒成立时,实数a的取值范围是{a|a≤﹣3或a≥3},求实数m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断函数的奇偶性,并加以证明;

2)用定义证明上是减函数;

3)函数上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市准备引进优秀企业进行城市建设. 城市的甲地、乙地分别对5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.

(Ⅰ)根据茎叶图,求乙地对企业评估得分的平均值和方差;

(Ⅱ)规定得分在85分以上为优秀企业. 若从甲、乙两地准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.

注:方差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣a(x﹣1),a∈R
(1)讨论函数f(x)的单调性;
(2)当x≥1时,f(x)≤ 恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】S是实数集R的非空子集,若对任意xyS,都有xyxyxyS,则称S为封闭集.下列命题:①集合S={ab|ab为整数}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足STR的任意集合T也是封闭集.其中真命题是________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列三个等式:f(x+y)=f(x)f(y),f(xy)=f(x)+f(y),f(ax+by)=af(x)+bf(y)(a+b=1).下列选项中,不满足其中任何一个等式的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD—A1B1C1D1中,ADAA11AB2,点E在棱AB上.

)求异面直线D1EA1D所成的角;

)若平面D1EC与平面ECD的夹角大小为45°,求点B到平面D1EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点为,半焦距为,离心率,又直线交椭圆于, 两点,中点.

1)求椭圆的标准方程;

2)若,求弦的长;

3)若点恰好平分弦,求实数;

4)若满足,求实数的取值范围并求的值;

5)设圆与椭圆相交于点与点,的最小值,并求此时圆的方程;

6)若直线是圆的切线,证明的大小为定值.

查看答案和解析>>

同步练习册答案