精英家教网 > 高中数学 > 题目详情
若直线ax-by+2=0(a>0,b>0)和函数f(x)=ax+1+1(a>0且a≠1)的图象恒过同一个定点,则当
1
a
+
1
b
取最小值时,函数f(x)的解析式是 ______.
函数f(x)=ax+1+1的图象恒过(-1,2),故
1
2
a+b=1,
1
a
+
1
b
=(
1
2
a+b)(
1
a
+
1
b
)=
3
2
+
b
a
+
a
2b
3
2
+
2

当且仅当b=
2
2
a时取等号,将b=
2
2
a代入
1
2
a+b=1得a=2
2
-2,
故f(x)=(2
2
-2)x+1+1.
故答案应为:f(x)=(2
2
-2)x+1+1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线ax-by+2=0(a>0,b>0)和函数f(x)=ax+1+1(a>0且a≠1)的图象恒过同一个定点,则当
1
a
+
1
b
取最小值时,函数f(x)的解析式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则
1
a
+
1
b
的最小值为(  )
A、
1
4
B、
2
C、
3
2
+
2
D、
3
2
+2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0所截得的弦长为4,则
1
a
+
1
b
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax-by+2=0(a>0,b>0)经过圆x2+y2+2x-2y=7的圆心,则ab的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)若直线ax+by=2经过点M(cosα,sinα),则 (  )

查看答案和解析>>

同步练习册答案