精英家教网 > 高中数学 > 题目详情
6.已知x>y>0,且m=$\frac{1}{2x(x-y)}$,n=${x}^{2}+\frac{1}{xy}$,则m+$\frac{n}{2}$的最小值为(  )
A.2B.4C.6D.8

分析 通分化为m+$\frac{n}{2}$=$\frac{1}{2x(x-y)}$+$\frac{{x}^{2}}{2}$+$\frac{1}{2xy}$=$\frac{1}{2y(x-y)}$+$\frac{{x}^{2}}{2}$,两次利用基本不等式的性质即可得出.

解答 解:∵x>y>0,
∴m+$\frac{n}{2}$=$\frac{1}{2x(x-y)}$+$\frac{{x}^{2}}{2}$+$\frac{1}{2xy}$=$\frac{1}{2y(x-y)}$+$\frac{{x}^{2}}{2}$$≥\frac{1}{2(\frac{y+x-y}{2})^{2}}$+$\frac{{x}^{2}}{2}$=$\frac{2}{{x}^{2}}$+$\frac{{x}^{2}}{2}$≥2,当且仅当x=$\sqrt{2}$,y=$\frac{\sqrt{2}}{2}$时取等号.
故选:A.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.不等式kx+1≤ex恒成立,则实数k的取值是1
不等式x+a≤ex恒成立,则实数a的取值范围是(-∞,1]
不等式x+1≤aex恒成立.则实数α的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知sinα+cosα=-$\frac{\sqrt{2}}{4}$,则sinαsin($\frac{π}{2}$+α)等于-$\frac{7}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.复数z=a+bi(a、b∈R)满足|$\overline{z}$|+z=8+4i,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|2≤2x≤16},B={x|log3x>1}.
(1)分别求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,∠B=60°,b=7且S△ABC═10$\sqrt{3}$,求其余两边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=2sin(x+2)的最大值是(  )
A.-2B.2C.2sin2D.-2sin2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=x4+4x3+6x2+4x+1,则f(9)=10000.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{2}{3}$x3+x2+ax+1在(-1,0)上有两个极值点x1,x2,且x1<x2
(1)求实数a的取值范围;
(2)证明:当-$\frac{1}{2}$<x<0 时,f(x)>$\frac{11}{12}$.

查看答案和解析>>

同步练习册答案