精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\frac{2}{3}$x3+x2+ax+1在(-1,0)上有两个极值点x1,x2,且x1<x2
(1)求实数a的取值范围;
(2)证明:当-$\frac{1}{2}$<x<0 时,f(x)>$\frac{11}{12}$.

分析 (1)求导数知方程2x2+2x+a=0在(-1,0)上有两不等实根,可得$\left\{\begin{array}{l}{g(-1)=a>0}\\{g(0)=a>0}\\{g(-\frac{1}{2})=\frac{1}{2}+(-1)+a<0}\end{array}\right.$,即可求出实数a的取值范围;
(2)确定ax2>$\frac{1}{2}$x2,可得f(x2)=$\frac{2}{3}$x23+x22+ax2+1>$\frac{2}{3}$x23+x22+x2+1,设h(x)=$\frac{2}{3}$x3+x2+$\frac{1}{2}$x+1,x∈(-$\frac{1}{2}$,0),h(x)在(-$\frac{1}{2}$,0)递增,即可证明结论.

解答 (1)解:∵f(x)=$\frac{2}{3}$x3+x2+ax+1,
∴f′(x)=2x2+2x+a,由题意知方程2x2+2x+a=0在(-1,0)上有两不等实根,
设g(x)=2x2+2x+a,其图象的对称轴为直线x=-$\frac{1}{2}$,
故有$\left\{\begin{array}{l}{g(-1)=a>0}\\{g(0)=a>0}\\{g(-\frac{1}{2})=\frac{1}{2}+(-1)+a<0}\end{array}\right.$,解得0<a<$\frac{1}{2}$.
(2)证明:由题意知x2是方程2x2+2x+a=0的大根,从而x2∈(-$\frac{1}{2}$,0),
由于0<a<$\frac{1}{2}$,∴ax2>$\frac{1}{2}$x2
∴f(x2)=$\frac{2}{3}$x23+x22+ax2+1>$\frac{2}{3}$x23+x22+x2+1.
设h(x)=$\frac{2}{3}$x3+x2+$\frac{1}{2}$x+1,x∈(-$\frac{1}{2}$,0),
h′(x)=2(x+$\frac{1}{2}$)2+$\frac{1}{2}$>0,
∴h(x)在(-$\frac{1}{2}$,0)递增,
∴h(x)>h(-$\frac{1}{2}$)=$\frac{11}{12}$,即f(x2)>$\frac{11}{12}$成立.

点评 本题考查利用导数研究函数的极值,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知x>y>0,且m=$\frac{1}{2x(x-y)}$,n=${x}^{2}+\frac{1}{xy}$,则m+$\frac{n}{2}$的最小值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.Sn为数列{an}的前n项和,a1=1,${S_n}=\frac{n}{n-1}{S_{n-1}}+n$(n≥2,n∈N+).
(1)求{an}的通项公式;
(2)设${c_n}={2^{a_n}}•{a_n}$,求{cn}的前n项和 Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=ax2+bx+c(a>0,b∈R,C∈R),若函数f(x)的最小值是f(-1)=0,f(0)=1且对称轴是x=-1,g(x)=$\left\{\begin{array}{l}{f(x)(x>0)}\\{-f(x)(x<0)}\end{array}\right.$
(1)求g(2)+g(-2)的值;
(2)求f(x)在区间[t,t+2](t∈R)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且b2-a2=ac,则(  )
A.B=2CB.B=2AC.A=2CD.C=2A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,将曲线$\left\{\begin{array}{l}{x=4cosα}\\{y=sinα}\end{array}\right.$(α为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线C1,以射线Ox为极轴建立极坐标系,曲线C2的极坐标方程是ρ=4sinθ.
(1)分别写出曲线C1,C2的普通方程;
(2)求C1和C2的公共弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=ax+b-1,若a,b都是从区间[0,2]任取的一个数,则f(1)<0成立的概率为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.先化简,再求值:$\frac{{{x^2}-x}}{{{x^2}-1}}×(2+\frac{{{x^2}+1}}{x})$,其中x=$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow a$与$\overrightarrow b$的夹角为120°,若$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,且$|\overrightarrow a|=2$,则$\overrightarrow b$在$\overrightarrow a$方向上的正射影的数量为$-\frac{{\sqrt{33}+1}}{8}$.

查看答案和解析>>

同步练习册答案