精英家教网 > 高中数学 > 题目详情

若f(x)=(k-2)x2+(k-m)x+3(其中x∈(-1,m))是偶函数,求k的值.

解:∵f(x)=(k-2)x2+(k-m)x+3是偶函数,且x∈(-1,m),
,解得k=m=1,
则k的值的值是1.
分析:由偶函数的性质:定义域关于原点对称和图象关于y轴对称,列出方程组求出k的值.
点评:本题考查了偶函数的性质:定义域关于原点对称和图象关于y轴对称的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2
4+2b-b2
•x
g(x)=-
1-(x-a)2
(a, b∈R)

(1)当b=0时,若f(x)在(-∞,2]上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(3)对满足(II)中的条件的整数对(a,b),试构造一个定义在D=x|x∈R且x≠2k,k∈Z上的函数h(x),使h(x+2)=h(x),且当x∈(-2,0)时,h(x)=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(k-2)x+2k-1
(1)若f(1)=16,函数g(x)是R上的奇函数,当x>0时,g(x)=f(x),
(i)求实数k与g(0)的值;
(ii)当x<0时,求g(x)的解析式;
(2)若方程f(x)=0的两根中,一根属于区间(0,1),另一根属于区间(1,2),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(4-k×2x)(k∈R)若f(x)在(-∞,2]上有意义,则实数k的范围(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,正确的命题是
②④
②④

①定义在R上的函数f(x),函数y=f(x-1)与y=f(1-x)的图象关于y轴对称;
②若f(x)=9x-(k+1)3x+1>0恒成立,则k的范围是(-∞,1);
③已知f(x)=1+log2x(1≤x≤16),则函数y=f2(x)+f(x2)的值域是[2,34];
④[x]表示不超过x的最大整数,当x是整数时[x]就是x,这个函数y=[x]叫做“取整函数”.那么[log21]+[log22]+[log23]+[log24]+…+[log2128]=649.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)已知函数y=f(x)对于任意θ≠
2
(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a为常数).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)利用函数y=f(x)构造一个数列,方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(ⅱ)是否存在一个实数a,使得取定义域中的任一值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由;
(ⅲ)当a=1时,若x1=-1,求数列{xn}的通项公式.

查看答案和解析>>

同步练习册答案