精英家教网 > 高中数学 > 题目详情

甲有大小相同的两张卡片,标有数字2、3;乙有大小相同的卡片四张,分别标有1、2、3、4.
(1)求乙随机抽取的两张卡片的数字之和为奇数的概率;
(2)甲、乙分别取出一张卡,比较数字,数字大者获胜,求乙获胜的概率.

(1);(2).

解析试题分析:(1)两张卡片的数字之和为奇数,即一奇一偶;两张卡片的数字之和为偶数,即两奇或两偶;(2)乙获胜,即要求乙取出的卡片上标有的数字比甲取出的卡片上标有的数字大,这样的情形有多少种,往往需要用枚举法.在(1)中我们是不考虑两张卡片的顺序的,若考虑顺序,即原题(1)这样表述:求乙随机先后抽取的两张卡片的数字之和为奇数的概率,则应这样求解:基本事件总数为,同时两张卡片的数字之和为奇数,即分为先奇后偶和先偶后奇,共种,概率为,所以概率计算一定要分清与顺序是否有关.
试题解析:(1)乙随机在分别标有1、2、3、4的四张卡片中抽取的两张卡片,其基本事件共有种,若要求两张卡片的数字之和为奇数,即一张为奇数,即在1、3中抽一张,另一张为偶数,即在2、4中抽一张,则两张卡片的数字之和为奇数这样的事件含有基本事件,根据古典概型概率计算公式的概率为.                                                            5分
(2)甲、乙分别取出一张卡,则基本事件总数为,乙获胜,即要求乙取出的卡片上标有的数字比甲取出的卡片上标有的数字大,故符合条件的数对有,有3对,根据古典概型概率计算公式得乙获胜的概率为.                                               10分
考点:计数原理与古典概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在乒乓球比赛中,甲与乙以“五局三胜”制进行比赛,根据以往比赛情况,甲在每一局胜乙的概率均为 .已知比赛中,乙先赢了第一局,求:
(Ⅰ)甲在这种情况下取胜的概率;
(Ⅱ)设比赛局数为X,求X的分布列及数学期望(均用分数作答)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校夏令营有3名男同学和3名女同学,其年级情况如下表:

 
一年级
二年级
三年级
男同学



女同学



 
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
(1)用表中字母列举出所有可能的结果
(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下图是淮北市6月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择6月1日至6月15日中的某一天到达该市,并停留2天.

(1)求此人到达当日空气重度污染的概率;
(2)若设是此人停留期间空气质量优良的天数,请分别求当x=0时,x=1时和x=3时的概率值。
(3)由图判断从哪天开始淮北市连续三天的空气质量指数方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:

 
关注NBA
不关注NBA
合  计
男   生
 
6
 
女   生
10
 
 
合   计
 
 
48
 
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为2/3
⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA与性别有关?
⑵现从女生中抽取2人进一步调查,设其中关注NBA的女生人数为X,求X的分布列与数学期望.
附:,其中

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

去年2月29日,我国发布了新修订的《环境空气质量标准》指出空气质量指数在为优秀,各类人群可正常活动.惠州市环保局对我市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,由此得到样本的空气质量指数频率分布直方图,如图.
(1) 求的值;
(2) 根据样本数据,试估计这一年度的空气质量指数的平均值;(注:设样本数据第组的频率为,第组区间的中点值为,则样本数据的平均值为.)
(3) 如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取天的数值,其中达到“特优等级”的天数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

小王经营一家面包店,每天从生产商处订购一种品牌现烤面包出售.已知每卖出一个现烤面包可获利10元,若当天卖不完,则未卖出的现烤面包因过期每个亏损5元.经统计,得到在某月(30天)中,小王每天售出的现烤面包个数及天数如下表:

售出个数
10
11
12
13
14
15
天数
3
3
3
6
9
6
试依据以频率估计概率的统计思想,解答下列问题:
(1)计算小王某天售出该现烤面包超过13个的概率;
(2)若在今后的连续5天中,售出该现烤面包超过13个的天数大于3天,则小王决定增加订购量.试求小王增加订购量的概率.
(3)若小王每天订购14个该现烤面包,求其一天出售该现烤面包所获利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本.
(1)根据所给样本数据完成下面2×2列联表;
(2)请问能有多大把握认为药物有效?

 
 
不得禽流感
 
得禽流感
 
总计
 
服药
 
 
 
 
 
 
 
不服药
 
 
 
 
 
 
 
总计
 
 
 
 
 
 
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

甲,乙两人约定8:00到9:00在图书馆见面,甲愿意等20分钟,乙愿意等30分钟,则他们见面的概率为              .

查看答案和解析>>

同步练习册答案