精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2-3x+3)ex
(Ⅰ)如果f(x)定义在区间[-2,t](t>-2)上,那么
①当t>1时,求函数y=f(x)的单调区间;
②设m=f(-2),n=f(t).试证明:m<n;
(Ⅱ)设g(x)=f(x)+(x-2)ex,当x>1时,试判断方程g(x)=x根的个数.
分析:(I)利用导数的运算法则即可得出f′(x).①当t>1时,分当x∈(-2,0)时;当x∈(0,1)时;当x∈(1,t)时,判断f′(x)的符号即可得出其单调性.②设h(t)=n-m,利用导数研究其单调性、极值即可;
(II)利用导数(通过多次求导)研究其单调性即可.
解答:解:(I)f′(x)=(2x-3)ex+(x2-3x+3)ex=x(x-1)ex
①当t>1时,
当x∈(-2,0)时,f′(x)>0,函数f(x)单调递增;
当x∈(0,1)时,f′(x)<0,函数f(x)单调递减;
当x∈(1,t)时,f′(x)>0,f(x)单调递增.
综上可知:当x∈(-2,0),(1,t)时,函数f(x)单调递增;当x∈(0,1)时,函数f(x)单调递减.
②设h(t)=n-m=(t2-3t+3)et-13e-2,h′(t)=t(t-1)et(t>2),列表如下:
由表格可知h(t)的极小值为h(1)=e-
13
e2
=
e3-13
e2
>0,而h(-2)>0,
∴当t>-2时,h(t)>h(-2),即n>m.
(II)g(x)=(x2-3x+3)ex+(x-2)ex=(x-1)2ex
问题转化为:判定方程(x-1)2ex=x当x>1时,根的个数.
设u(x)=(x-1)2ex-x(x>1),则u′(x)=(x2-1)ex-1,
设v(x)=(x2-1)ex-1(x>1),则v′(x)=(x2+2x-1)ex
当x>1时,v′(x)>0,v(x)在(1,+∞)上单调递增,而v(1)=-1<0,v(2)=3e2-1>0,
因此在(1,2)上存在唯一x0,使得v(x0)=0,即存在唯一x0∈(1,2)使得u′(x0)=0,
列表如下:
可知:u(x)min=u(x0)<u(1)=-1<0,由u(2)=e2-2>0,y=u(x)的图象如图所示,因此y=u(x)在(1,+∞)只有一个零点,即g(x)=x(x>1)只有一个零点.
点评:熟练掌握利用导数研究函数的单调性、极值是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案