分析 (1)根据正弦定理,结合等差数列和等比数列的定义即可得到结论.
(2)由b=2,可得ac=b2 =4,利用余弦定理求得cosB的最小值,可得B的最大值.由△ABC的面积S=$\frac{1}{2}$ac•sinB=2sinB,可得它的最大值.
解答 解:(1)△ABC中,∵cos2B+cosB=1-cosAcosC,即 $\frac{1+cos2B}{2}$-cos(A+C)=1-cosAcosC,
即1+cos2B-2cos(A+C)=2-2cosAcosC,即cos2B=1-2sinAsinC=1+cos(A+C)-cos(A-C),
∴cos2B-cos(A+C)+cos(A-C)=1,
即1-2sin2B-cosAcosC+sinAsinC+cosAcosC+sinAsinC=1,
即sinAsinC=sin2B,由正弦定理得ac=b2,(a,b,c>0),
则a,b,c三边成等比数列.
(2)若b=2,则ac=b2 =4,利用余弦定理可得b2=4=a2+c2-2ac•cosB≥2ac-2ac•cosB=8-8cosB,
∴cosB≥$\frac{1}{2}$,∴B≤$\frac{π}{3}$,∴△ABC的面积S=$\frac{1}{2}$ac•sinB=2sinB≤2•$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
故△ABC的面积的最大值为$\sqrt{3}$.
点评 本题主要考查等差数列的判断以及正弦定理、余弦定理、基本不等式的应用,要求熟练掌握相应的公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com