精英家教网 > 高中数学 > 题目详情

集合A={x||x|≤4,x∈R},B={x|(x+5)(x-a)≤0},则“AÍB”是“a>4”的


  1. A.
    充分不必要条件
  2. B.
    必要不充分条件
  3. C.
    充要条件
  4. D.
    既不充分也不必要条件
B
试题分析:因为A={x||x|≤4,x∈R}={x|},若AÍB,
则B={x|(x+5)(x-a)≤0}={x|},所以须。反之,若a>4,则必有B={x|(x+5)(x-a)≤0}={x|},AÍB,因此,“AÍB”是“a>4”的必要不充分条件,故选B。
考点:本题主要考查充要条件的概念,集合的概念,简单不等式解法。
点评:基础题,充要条件的判断问题,是高考不可少的内容,特别是充要条件可以和任何知识点相结合。充要条件的判断一般有三种思路:定义法、等价关系转化法、集合关系法。本题运用的是集合关系法。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},则集合A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x>1},B={x|x2-2x<0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)1、已知全集∪=R,集合A={x|x2≤4},B={x|x<1},则集合A∪?UB等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•桂林二模)已知集合A={x|
x-5
x+2
<0},B={x|x>0},那么集合A∩B等于(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},则集合A∩B=(  )
A.{x|x>0或x<-3}B.{x|x>0或x<-1}C.{x|x>3或x<-1}D.{x|2<x<3}

查看答案和解析>>

同步练习册答案